Inversion, Shifting and Scaling of signals

Operations of CT Signals

1. Time Reversal $y(t)=x(-t)$
2. Time Shifting $y(t)=x(t-t d)$
3. Amplitude Scaling $y(t)=B x(t)$
4. Addition $\mathrm{y}(\mathrm{t})=\mathrm{x} 1(\mathrm{t})+\mathrm{x} 2(\mathrm{t})$
5. Multiplication $y(t)=x 1(t) x 2(t)$
6. Time Scaling $y(t)=x(a t)$
7. Time Reversal

Flips the signal about the y axis
$\mathrm{y}(\mathrm{t})=\mathrm{x}(-\mathrm{t})$
ex. Let $\mathrm{x}(\mathrm{t})=\mathrm{u}(\mathrm{t})$, and perform time reversal
Solution: Find $y(t)=u(-t)$
Let "a" be the argument of the step function $u(a)$
$u(a)= \begin{cases}1 & a \geq 0 \\ 0 & a<0\end{cases}$
Let $\mathrm{a}=-\mathrm{t}$, and plug in this value of "a"
$u(-t)= \begin{cases}1 & t \leq 0 \\ 0 & t>0\end{cases}$

2. Time Shifting / Delay $\mathrm{y}(\mathrm{t})=\mathrm{x}(\mathrm{t}-\mathrm{td})$
$>$ Shifts the signal left or right
$>$ Shifts the origin of the signal to t_{d}
$>$ Rule $-\operatorname{Set}(\mathrm{t}-\mathrm{td})=0($ set the argument equal to zero)
$>$ Then move the origin of $\mathrm{x}(\mathrm{t})$ to td
$>$ Effectively, $\mathrm{y}(\mathrm{t})$ equals what $\mathrm{x}(\mathrm{t})$ was td seconds ago
ex. Sketch $y(t)=u(t-2)$

Method 1
Let "a" be the argument of " u "

$$
y(a)=\left\{\begin{array}{ll}
1 & a \geq 0 \\
0 & a<0
\end{array}=\left\{\begin{array}{ll}
1 & t-2 \geq 0 \\
0 & t-2<0
\end{array}= \begin{cases}1 & t \geq 2 \\
0 & t<2\end{cases}\right.\right.
$$

Method 2 (by inspection)
Simply shift the origin to $t_{d}=2$

