Fourier Transform: Properties

Fourier Transform Definition

Represent the signal as an infinite weighted sum of an infinite number of sinusoids

$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-i2\pi ux} dx$$

Note:
$$e^{ik} = \cos k + i \sin k$$
 $i = \sqrt{-1}$

Arbitrary function
$$\longrightarrow$$
 Single Analytic Expression

Spatial Domain (x) \longrightarrow Frequency Domain (u)

(Frequency Spectrum $F(u)$)

Inverse Fourier Transform (IFT)

$$f(x) = \int_{-\infty}^{\infty} F(u)e^{i2\pi ux} dx$$

Fourier Transform

• Also, defined as:

$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-iux}dx$$
Note: $e^{ik} = \cos k + i\sin k$ $i = \sqrt{-1}$

• Inverse Fourier Transform (IFT)

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(u)e^{iux} dx$$

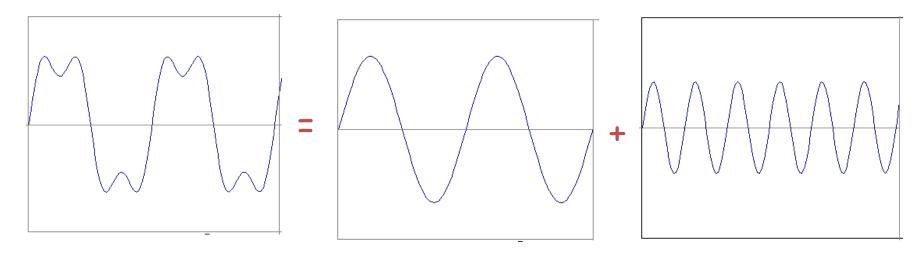
Conditions of existence of FT

 Sufficient condition for the existence of a Fourier transform

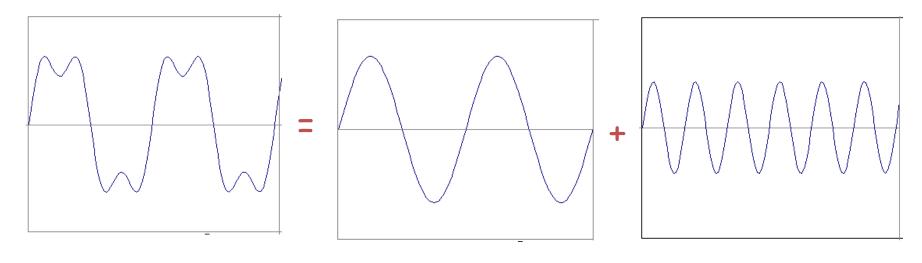
$$\int_{-\infty}^{\infty} |f(t)| dt < \infty$$

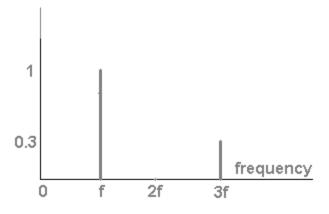
- That is, f(t) is absolutely integrable.
- However, the above condition is not the necessary one.

• example : $g(t) = \sin(2pift) + (1/3)\sin(2pi(3f)t)$

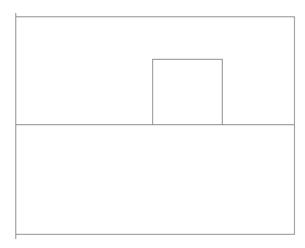


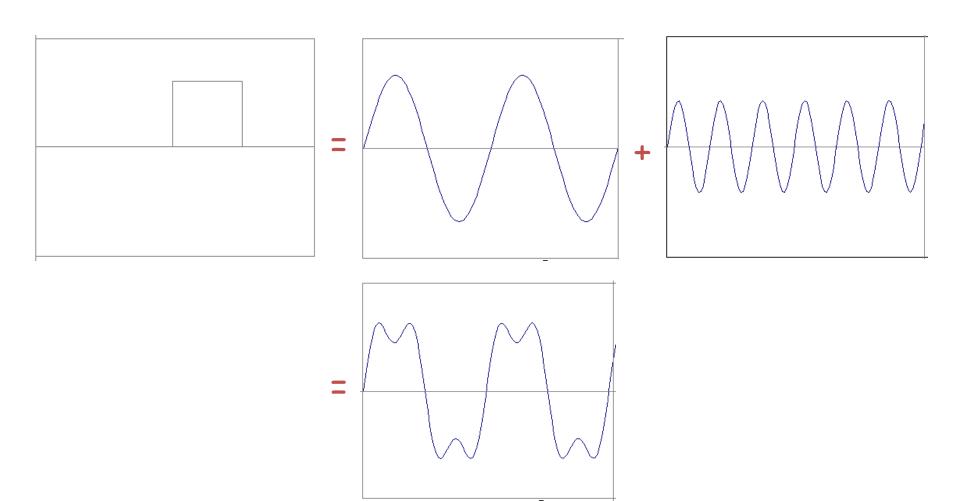
• example : $g(t) = \sin(2pift) + (1/3)\sin(2pi(3f)t)$





• Usually, frequency is more interesting than the phase





Frequency Spectra

