Properties, Applications to
network analysis



Properties of Fourier Transform
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Parseval Theorem

Parsewval’s theorem:
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Fourier Transform: Applications
to network analysis



Dirac Delta Function

5(t) = - and | 8(Hdt =1

Also called unit impulse function.




Generalized Function

* The value of delta function can also be
defined in the sense of generalized function:

[* 8)6(0)dt = 4(0)]  (t): Test Function

e \We shall never talk about the value of o(%).

e Instead, we talk about the values of integrals
involving 5(t).



Properties of Unit Impulse Function
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Properties of Unit Impulse Function
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Properties of Unit Impulse Function
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Properties of Unit Impulse Function
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Properties of Unit Impulse Function
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Generalized Derivatives

The derivative f’(t) of an arbitrary generalized
function f(t) is defined by:
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Show that this definition is consistent to the ordinary definition for the first
derivative of a continuous function.
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