
Properties, Applications to 

network analysis 



Properties of Fourier Transform 

Spatial Domain (x) Frequency Domain (u) 

Linearity    xgcxfc 21     uGcuFc 21 

Scaling  axf 








a

u
F

a

1

Shifting  0xxf   uFe
uxi 02

Symmetry  xF  uf 

Conjugation  xf   uF 

Convolution    xgxf     uGuF

Differentiation 
 
n

n

dx

xfd
   uFui

n
2

frequency (              ) uxie 2

Note that these are derived using 



Parseval Theorem 



Fourier Transform: Applications 

to network analysis 



Dirac Delta Function 
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Also called unit impulse function. 



Generalized Function 

• The value of delta function can also be 
defined in the sense of generalized function:  
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dttt (t): Test Function 

 We shall never talk about the value of (t).  

 Instead, we talk about the values of integrals 

involving (t). 



Properties of Unit Impulse Function 
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Write t as t + t0 
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Properties of Unit Impulse Function 

)0(
||

1
)()( 



 a
dttat

Pf) 





 dttat )()(

Write t as t/a 

Consider a>0 
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Consider a<0 
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Properties of Unit Impulse Function 
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Properties of Unit Impulse Function 
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Properties of Unit Impulse Function 
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Generalized Derivatives 

The derivative f’(t) of an arbitrary generalized 
function f(t) is defined by: 
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Show that this definition is consistent to the ordinary definition for the first 
derivative of a continuous function.  
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