Properties, Applications to network analysis

Properties of Fourier Transform

Spatial Domain (x)
Linearity

$$
c_{1} f(x)+c_{2} g(x)
$$

Scaling

$$
f(a x)
$$

Shifting
$f\left(x-x_{0}\right)$
Symmetry

$$
F(x)
$$

Conjugation
$f^{*}(x)$
Convolution

$$
f(x) * g(x)
$$

Differentiation $\frac{d^{n} f(x)}{d x^{n}}$

Frequency Domain (u)

$$
\begin{aligned}
& c_{1} F(u)+c_{2} G(u) \\
& \frac{1}{|a|} F\left(\frac{u}{a}\right) \\
& e^{-i 2 \pi u x_{0}} F(u) \\
& f(-u) \\
& F^{*}(-u) \\
& F(u) G(u) \\
& (i 2 \pi u)^{n} F(u)
\end{aligned}
$$

Note that these are derived using frequency ($e^{-i 2 \pi \mu)}$

Parseval Theorem

Parseval's theorem:	
$\int_{\infty}^{\infty}\|f(x)\|^{2} d x=\int_{-\infty}^{\infty}\|F(\xi)\|^{2} d \xi$	
$\int_{-\infty}^{\infty} f(x) g^{*}(x) d$	$=\int_{-\infty}^{\infty} F(\xi) G^{*}(\xi) d \xi$
$f(x)$	$F(\xi)$
Real (R)	Real part even (RE) Imaginary part odd (IO)
Imaginary (I)	RO,IE
RE,IO	R
RE,IE	I
RE	RE
RO	10
IE	IE
10	RO
Complex even (CE)	CE
CO	CO

Fourier Transform: Applications to network analysis

Dirac Delta Function

$$
\delta(t)=\left\{\begin{array}{cc}
0 & t \neq 0 \\
\infty & t=0
\end{array} \quad \text { and } \quad \int_{-\infty}^{\infty} \delta(t) d t=1\right.
$$

Also called unit impulse function.

Generalized Function

- The value of delta function can also be defined in the sense of generalized function:

$$
\int_{-\infty}^{\infty} \delta(t) \phi(t) d t=\phi(0)
$$

$\phi(\mathrm{t})$: Test Function

- We shall never talk about the value of $\delta(t)$.
- Instead, we talk about the values of integrals involving $\delta(t)$.

Properties of Unit Impulse Function

$$
\int_{-\infty}^{\infty} \delta\left(t-t_{0}\right) \phi(t) d t=\phi\left(t_{0}\right)
$$

Pf)
Write t as $t+t_{0}$

$$
\begin{aligned}
\int_{-\infty}^{\infty} \delta\left(t-t_{0}\right) \phi(t) d t & =\int_{-\infty}^{\infty} \delta(t) \phi\left(t+t_{0}\right) d t \\
& =\phi\left(t_{0}\right)
\end{aligned}
$$

Properties of Unit Impulse Function

$\int_{-\infty}^{\infty} \delta(a t) \phi(t) d t=\frac{1}{|a|} \phi(0)$

Pf) Write t as t / a

Consider $a>0$

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \delta(a t) \phi(t) d t \\
= & \frac{1}{a} \int_{-\infty}^{\infty} \delta(t) \phi\left(\frac{t}{a}\right) d t \\
= & \frac{1}{|a|} \phi(0)
\end{aligned}
$$

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \delta(a t) \phi(t) d t \\
= & -\frac{1}{a} \int_{-\infty}^{\infty} \delta(t) \phi\left(\frac{t}{a}\right) d t \\
= & \frac{1}{|a|} \phi(0)
\end{aligned}
$$

Properties of Unit Impulse Function

$f(t) \delta(t)=f(0) \delta(t)$
Pf)

$$
\begin{aligned}
\int_{-\infty}^{\infty} \underbrace{[f(t) \delta(t)]} \phi(t) d t & =\int_{-\infty}^{\infty} \delta(t)[f(t) \phi(t)] d t \\
& =f(0) \phi(0) \\
& =f(0) \int_{-\infty}^{\infty} \delta(t) \phi(t) d t \\
& =\int_{-\infty}^{\infty} \underbrace{[f(0) \delta(t)]} \phi(t) d t
\end{aligned}
$$

Properties of Unit Impulse Function

$f(t) \delta(t)=f(0) \delta(t)$

$$
\delta(a t)=\frac{1}{|a|} \delta(t)
$$

Pf)

$$
\begin{aligned}
\int_{-\infty}^{\infty} \underbrace{\delta(a t)} \phi(t) d t=\frac{1}{|a|} \phi(0) & =\frac{1}{|a|} \int_{-\infty}^{\infty} \delta(t) \phi(t) d t \\
& =\int_{-\infty}^{\infty} \frac{1}{|a|} \delta(t) \phi(t) d t
\end{aligned}
$$

Properties of Unit Impulse Function

$$
f(t) \delta(t)=f(0) \delta(t)
$$

$$
\delta(a t)=\frac{1}{|a|} \delta(t)
$$

$$
t \delta(t)=0
$$

$$
\delta(-t)=\delta(t)
$$

Generalized Derivatives

The derivative $f^{\prime}(t)$ of an arbitrary generalized function $f(t)$ is defined by:

$$
\int_{-\infty}^{\infty} f^{\prime}(t) \phi(t) d t=-\int_{-\infty}^{\infty} f(t) \phi^{\prime}(t) d t
$$

Show that this definition is consistent to the ordinary definition for the first derivative of a continuous function.

$$
\int_{-\infty}^{\infty} f^{\prime}(t) \phi(t) d t=\underbrace{\left.f(t) \phi(t)\right|_{-\infty} ^{\infty}}_{=0}-\int_{-\infty}^{\infty} f(t) \phi^{\prime}(t) d t
$$

