Properties, Applications to network analysis

Properties of Fourier Transform

	Spatial Domain <i>(x)</i>	Frequency Domain <i>(u)</i>
Linearity	$c_1 f(x) + c_2 g(x)$	$c_1 F(u) + c_2 G(u)$
Scaling	f(ax)	$\frac{1}{ a }F\left(\frac{u}{a}\right)$
Shifting	$f(x-x_0)$	$e^{-i2\pi u x_0}F(u)$
Symmetry	F(x)	f(-u)
Conjugation	$f^*(x)$	$F^*(-u)$
Convolution	$f(x) \ast g(x)$	F(u)G(u)
Differentiation	$\frac{d^n f(x)}{dx^n}$	$(i2\pi u)^n F(u)$
		Note that these are de

1

L

Note that these are derived using frequency ($e^{-i2\pi i k}$

Parseval Theorem

Parseva $ \int_{-\infty}^{\infty} f(x) ^2 dx $ $ \int_{-\infty}^{\infty} f(x)g^*(x) dx $	al's theorem: $x = \int_{-\infty}^{\infty} F(\xi) ^2 d\xi$ $x = \int_{-\infty}^{\infty} F(\xi) G^*(\xi) d\xi$	
f(x)	$F(\xi)$	
Real(R)	Real part even (RE) Imaginary part odd (IO)	
Imaginary (I)	RO,IE	
RE,IO	R	
RE,IE	I	
RE	RE	
RO	IO	
IE	IE	
IO	RO	
Complex even (CE)	CE	
CO	CO	

Fourier Transform: Applications to network analysis

Dirac Delta Function

$$\delta(t) = \begin{cases} 0 & t \neq 0 \\ \infty & t = 0 \end{cases} \quad \text{and} \quad \int_{-\infty}^{\infty} \delta(t) dt = 1$$

⊾ t

0

Generalized Function

• The value of delta function can also be defined in the sense of generalized function:

$$\int_{-\infty}^{\infty} \delta(t) \phi(t) dt = \phi(0)$$

(t): Test Function

- We shall never talk about the value of $\delta(t)$.
- Instead, we talk about the values of integrals involving $\delta(t)$.

$$\int_{-\infty}^{\infty} \delta(t - t_0) \phi(t) dt = \phi(t_0)$$

Pf)

Write t as $t + t_0$

$$\int_{-\infty}^{\infty} \delta(t - t_0) \phi(t) dt = \int_{-\infty}^{\infty} \delta(t) \phi(t + t_0) dt$$
$$= \phi(t_0)$$

$$\int_{-\infty}^{\infty} \delta(at)\phi(t)dt = \frac{1}{|a|}\phi(0)$$

Pf) Write *t* as *t/a*

Consider *a*>0

$$\int_{-\infty}^{\infty} \delta(at)\phi(t)dt$$
$$= \frac{1}{a} \int_{-\infty}^{\infty} \delta(t)\phi\left(\frac{t}{a}\right)dt$$
$$= \frac{1}{|a|}\phi(0)$$

Consider *a*<0

$$\int_{-\infty}^{\infty} \delta(at)\phi(t)dt$$
$$= -\frac{1}{a} \int_{-\infty}^{\infty} \delta(t)\phi\left(\frac{t}{a}\right)dt$$
$$= \frac{1}{|a|}\phi(0)$$

$$f(t)\delta(t) = f(0)\delta(t)$$

$$\int_{-\infty}^{\infty} [f(t)\delta(t)]\phi(t)dt = \int_{-\infty}^{\infty} \delta(t)[f(t)\phi(t)]dt$$
$$= f(0)\phi(0)$$
$$= f(0)\int_{-\infty}^{\infty} \delta(t)\phi(t)dt$$
$$= \int_{-\infty}^{\infty} [f(0)\delta(t)]\phi(t)dt$$

$$f(t)\delta(t) = f(0)\delta(t)$$

$$\delta(at) = \frac{1}{|a|}\delta(t)$$

$$f(t)\delta(t) = \frac{1}{|a|}\delta(t)$$

$$\int_{-\infty}^{\infty} \delta(at)\phi(t)dt = \frac{1}{|a|}\phi(0) = \frac{1}{|a|}\int_{-\infty}^{\infty} \delta(t)\phi(t)dt$$

$$= \int_{-\infty}^{\infty} \frac{1}{|a|}\delta(t)\phi(t)dt$$

$$= \int_{-\infty}^{\infty} \frac{1}{|a|} \delta(t) \phi(t) dt$$

Generalized Derivatives

The derivative f'(t) of an arbitrary generalized function f(t) is defined by:

$$\int_{-\infty}^{\infty} f'(t)\phi(t)dt = -\int_{-\infty}^{\infty} f(t)\phi'(t)dt$$

Show that this definition is consistent to the ordinary definition for the first derivative of a continuous function.

$$\int_{-\infty}^{\infty} f'(t)\phi(t)dt = f(t)\phi(t)\Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} f(t)\phi'(t)dt$$