Review of Laplace-Transform (LT)

The Laplace Transform

The Laplace Transform of a function, $\mathrm{f}(\mathrm{t})$, is defined as;

$$
L[f(t)]=F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t \quad \text { Eq A }
$$

The Inverse Laplace Transform is defined by

$$
L^{-1}[F(s)]=f(t)=\frac{1}{2-i} \int^{\sigma+j \infty} F(s) e^{t s} d s
$$

The Laplace Transform

We generally do not use EqB to take the inverse Laplace. However, this is the formal way that one would take the inverse. To use

Eq B requires a background in the use of complex variables and the theory of residues. Fortunately, we can accomplish the same goal (that of taking the inverse Laplace) by using partial fraction expansion and recognizing transform pairs.

The Laplace Transform

Laplace Transform of the unit step.

$$
\begin{aligned}
& \boldsymbol{L}[\boldsymbol{u}(t)]=\int_{0}^{\infty} 1 \boldsymbol{e}^{-s t} d t=\left.\frac{-1}{s} \boldsymbol{e}^{-s t}\right|_{0} ^{\infty} \\
& \boldsymbol{L}[\boldsymbol{u}(t)]=\frac{1}{s}
\end{aligned}
$$

The Laplace Transform of a unit step is:
$\frac{1}{s}$

The Laplace Transform

The Laplace transform of a unit impulse:

Pictorially, the unit impulse appears as follows:
$\mathrm{f}(\mathrm{t}) \int_{0} \underbrace{4} \delta\left(\mathrm{t}-\mathrm{t}_{0}\right)$

Mathematically:

$$
\delta\left(t-t_{0}\right)=0 \quad t \neq 0
$$

$$
\int_{t_{0}-\varepsilon}^{t_{0}+\varepsilon} \delta\left(t-t_{0}\right) d t=1 \quad \varepsilon>0
$$

The Laplace Transform

The Laplace transform of a unit impulse:

An important property of the unit impulse is a sifting or sampling property. The following is an important.

$$
\int_{t_{1}}^{t_{2}} f(t) \delta\left(t-t_{0}\right) d t=\left\{\begin{array}{lr}
f\left(t_{0}\right) & t_{1}<t_{0}<t_{2} \\
0 & t_{0}<t_{1}, t_{0}>t_{2}
\end{array}\right.
$$

The Laplace Transform

The Laplace transform of a unit impulse:

In particular, if we let $f(t)=\delta(t)$ and take the Laplace

$$
L[\delta(t)]=\int_{0}^{\infty} \delta(t) e^{-s t} d t=e^{-0, s}=1
$$

The Laplace Transform

An important point to remember:

$$
f(t) \Leftrightarrow F(s)
$$

The above is a statement that $\mathrm{f}(\mathrm{t})$ and $\mathrm{F}(\mathrm{s})$ are transform pairs. What this means is that for each $f(t)$ there is a unique $F(s)$ and for each $F(s)$ there is a unique $f(t)$. If we can remember the Pair relationships between approximately 10 of the Laplace transform pairs we can go a long way.

The Laplace Transform

Building transform pairs:

$$
L\left[e^{-a t} u(t)\right]=\int_{0}^{\infty} e^{-a t} e^{-s t} d t=\int_{0}^{\infty e} e^{-(s+a) t} d t
$$

$$
L\left[e^{-a t} u(t)\right]=\left.\frac{-e^{-s t}}{(s+a)}\right|_{0} ^{\infty}=\frac{1}{s+a}
$$

