Inverse Laplace Transform

The Laplace Transform

Time Differentiation:

We can extend the previous to show;
$L\left[\frac{d f(t)^{2}}{d t^{2}}\right]=s^{2} F(s)-s f(0)-f^{\prime}(0)$
$L\left[\frac{d f(t)^{3}}{d t^{3}}\right]=s^{3} F(s)-s^{2} f(0)-s f^{\prime}(0)-f^{\prime \prime}(0)$
general case

$$
\begin{gathered}
L\left[\frac{d f(t)^{n}}{d t^{n}}\right]=s^{n} F(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0) \\
-\ldots-f^{(n-1)}(0)
\end{gathered}
$$

The Laplace Transform

Transform Pairs:

$f(\mathrm{t})$	$\mathrm{F}(\mathrm{s})$
$\boldsymbol{\delta}(\boldsymbol{t})$	$\mathbf{1}$
$\boldsymbol{u}(\boldsymbol{t})$	$\frac{1}{s}$
$\boldsymbol{e}^{-s t}$	$\frac{1}{s+\boldsymbol{a}}$
\boldsymbol{t}	$\frac{1}{s^{2}}$
$\boldsymbol{t}^{\boldsymbol{n}}$	$\frac{n!}{s^{n+1}}$

The Laplace Transform

Transform Pairs:

$\mathrm{f}(\mathrm{t})$	$\mathrm{F}(\mathrm{s})$
$t e^{-a t}$	$\frac{1}{(s+a)^{2}}$
$t^{n} e^{-a t}$	$\frac{n!}{(s+a)^{n+1}}$
$\sin (w t)$	$\frac{w}{s^{2}+w^{2}}$
$\cos (w t)$	$\frac{s}{s^{2}+w^{2}}$

The Laplace Transform

Transform Pairs:

The Laplace Transform

Common Transform Properties:

$$
\begin{array}{lc}
& \\
f(t) & F(s) \\
f\left(t-t_{0}\right) u\left(t-t_{0}\right), t_{0} \geq 0 & e^{-t_{0} s} F(s) \\
f(t) u\left(t-t_{0}\right), t \geq 0 & e^{-t_{o} s} L\left[f\left(t+t_{0}\right)\right. \\
e^{-a t} f(t) & F(s+a) \\
\frac{d^{n} f(t)}{d t^{n}} & s^{n} F(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\ldots-s^{0} f^{n-1} f(0) \\
t f(t) & -\frac{d F(s)}{d s} \\
\int_{0}^{t} f(\lambda) d \lambda & \frac{1}{s} F(s)
\end{array}
$$

The Laplace Transform

Using Matlab with Laplace transform:

Example
Use Matlab to find the transform of
$t e^{-4 t}$

The following is written in italic to indicate Matlab code

$$
\begin{aligned}
& \text { syms } t, s \\
& \text { laplace }\left(t^{*} \exp \left(-4^{*} t\right), t, s\right) \\
& \text { ans }= \\
& \quad 1 /(s+4)^{\wedge} 2
\end{aligned}
$$

The Laplace Transform

Using Matlab with Laplace transform:

Example Use Matlab to find the inverse transform of

$$
F(s)=\frac{s(s+6)}{(s+3)\left(s^{2}+6 s+18\right)} \quad \text { prob.12.19 }
$$

syms st
ilaplace $\left(s^{*}(s+6) /\left((s+3) *\left(s^{\wedge} 2+6 * s+18\right)\right)\right)$
ans =

$$
-\exp (-3 * t)+2 * \exp (-3 * t) * \cos (3 * t)
$$

The Laplace Transform

Theorem: Initial Value Theorem:

If the function $f(t)$ and its first derivative are Laplace transformable and $f(t)$ Has the Laplace transform $F(s)$, and the $\quad \lim _{s \rightarrow \infty} s F(\operatorname{ex})$ sts, then

The utility of this theorem lies in not having to take the inverse of $\mathrm{F}(\mathrm{s})$ in order to find out the initial condition in the time domain. This is particularly useful in circuits and systems.

The Laplace Transform

Example: Initial Value Theorem:
Given;

$$
F(s)=\frac{(s+2)}{(s+1)^{2}+5^{2}}
$$

Find $f(0)$

$$
\begin{aligned}
f(0) & =\lim _{s \rightarrow \infty} s F(s)=\lim _{s \rightarrow \infty} s \frac{(s+2)}{(s+1)^{2}+5^{2}}=\lim _{s \rightarrow \infty}\left[\frac{s^{2}+2 s}{s^{2}+2 s+1+25}\right] \\
& =\lim _{s \rightarrow \infty} \frac{s^{2} / s^{2}+2 s / s^{2}}{s^{2} / s^{2}+2 s / s^{2}+\left(26 / s^{2}\right)}=1
\end{aligned}
$$

The Laplace Transform

Theorem: Final Value Theorem:

If the function $f(t)$ and its first derivative are Laplace transformable and $f(t)$ has the Laplace transform $F(s)$, and the $\lim s F$ exists, then

$$
S \rightarrow \infty
$$

$$
\lim _{s \rightarrow 0} s F(s)=\lim _{t \rightarrow \infty} f(t)=f(\infty)
$$

Final Value
Theorem

Again, the utility of this theorem lies in not having to take the inverse of $F(s)$ in order to find out the final value of $f(t)$ in the time domain. This is particularly useful in circuits and systems.

The Laplace Transform

Example: Final Value Theorem:

Given:

$$
F(s)=\frac{(s+2)^{2}-3^{2}}{\left[(s+2)^{2}+3^{2}\right]} \quad \text { note } F^{-1}(s)=t e^{-2 t} \cos 3 t
$$

Find $\quad f(\infty)$

$$
f(\infty)=\lim _{s \rightarrow 0} s F(s)=\lim _{s \rightarrow 0} \frac{(s+2)^{2}-3^{2}}{s\left[(s+2)^{2}+3^{2}\right]}=0
$$

