Transfer
 Function and State Variables

THE TRANSFER FUNCTION FROM THE STATE EQUATION

The transfer function of a single input-single output (SISO) system can be obtained from the state variable equations.

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x
\end{aligned}
$$

where y is the single output and u is the single input. The Laplace transform of the equations

$$
\begin{aligned}
& \mathrm{sX}(\mathrm{~s})=\mathrm{AX}(\mathrm{~s})+\mathrm{BU}(\mathrm{~s}) \\
& \mathrm{Y}(\mathrm{~s})=\mathrm{CX}(\mathrm{~s})
\end{aligned}
$$

where B is an nx1 matrix, since u is a single input. We do not include initial conditions, since we seek the transfer function. Reordering the equation

$$
\begin{aligned}
& {[\mathrm{sI}-\mathrm{A}] \mathrm{X}(\mathrm{~s})=\mathrm{BU}(\mathrm{~s})} \\
& \mathrm{X}(\mathrm{~s})=[\mathrm{sI}-\mathrm{A}]^{-1} \mathrm{BU}(\mathrm{~s})=\phi(\mathrm{s}) \mathrm{BU}(\mathrm{~s}) \\
& \mathrm{Y}(\mathrm{~s})=\mathrm{C} \phi(\mathrm{~s}) \mathrm{BU}(\mathrm{~s})
\end{aligned}
$$

Therefore, the transfer function $\mathrm{G}(\mathrm{s})=\mathrm{Y}(\mathrm{s}) / \mathrm{U}(\mathrm{s})$ is

$$
G(s)=C \phi(s) B
$$

Example:
Determine the transfer function $\mathrm{G}(\mathrm{s})=\mathrm{Y}(\mathrm{s}) / \mathrm{U}(\mathrm{s})$ for the RLC circuit as described by the state differential function

$$
\dot{\mathrm{x}}=\left[\begin{array}{rr}
0 & -\frac{1}{\mathrm{C}} \\
\frac{1}{\mathrm{~L}} & -\frac{\mathrm{R}}{\mathrm{~L}}
\end{array}\right] \mathrm{x}+\left[\begin{array}{c}
\frac{1}{\mathrm{C}} \\
0
\end{array}\right] \mathrm{u} \quad, \quad \mathrm{y}=\left[\begin{array}{ll}
0 & \mathrm{R}
\end{array}\right] \mathrm{x}
$$

$$
[\mathrm{sI}-\mathrm{A}]=\left[\begin{array}{cc}
\mathrm{s} & \frac{1}{\mathrm{C}} \\
-\frac{1}{\mathrm{~L}} & \mathrm{~s}+\frac{\mathrm{R}}{\mathrm{~L}}
\end{array}\right] \quad \begin{aligned}
& \phi(\mathrm{s})=[\mathrm{sI}-\mathrm{A}]^{-1}=\frac{1}{\Delta(\mathrm{~s})}\left[\begin{array}{cc}
\mathrm{s}+\frac{\mathrm{R}}{\mathrm{~L}} & -\frac{1}{\mathrm{C}} \\
\frac{1}{\mathrm{~L}} & \mathrm{~s}
\end{array}\right] \\
& \Delta(\mathrm{s})=\mathrm{s}^{2}+\frac{\mathrm{R}}{\mathrm{~L}} \mathrm{~s}+\frac{1}{\mathrm{LC}}
\end{aligned}
$$

Then the transfer function is

$$
\begin{aligned}
& \mathrm{G}(\mathrm{~s})=\left[\begin{array}{ll}
0 & \mathrm{R}
\end{array}\right]\left[\begin{array}{cc}
\frac{\mathrm{s}+\frac{\mathrm{R}}{\mathrm{~L}}}{\frac{\Delta(\mathrm{~s})}{}} & -\frac{1}{\mathrm{C} \Delta(\mathrm{~s})} \\
\frac{1}{\mathrm{~L} \Delta(\mathrm{~s})} & \frac{\mathrm{s}}{\Delta(\mathrm{~s})}
\end{array}\right]\left[\begin{array}{l}
\frac{1}{\mathrm{C}} \\
0
\end{array}\right] \\
& \mathrm{G}(\mathrm{~s})=\frac{\mathrm{R} / \mathrm{LC}}{\Delta(\mathrm{~s})}=\frac{\mathrm{R} / \mathrm{LC}}{\mathrm{~s}^{2}+\frac{\mathrm{R}}{\mathrm{~L}} \mathrm{~s}+\frac{1}{\mathrm{LC}}}
\end{aligned}
$$

ANALYSIS OF STATE VARIABLE MODELS USING MATLAB

Given a transfer function, we can obtain an equivalent state-space representation and vice versa. The function tf can be used to convert a state-space representation to a transfer function representation; the function ss can be used to convert a transfer function representation to a state-space representation. The functions are shown in Figure 4, where sys_tf represents a transfer function model and sys_ss is a state space representation.

The ss function

Figure 4.

For instance, consider the third-order system

$$
G(s)=\frac{Y(s)}{R(s)}=\frac{2 s^{2}+8 s+6}{s^{3}+8 s^{2}+16 s+6}
$$

We can obtain a state-space representation using the ss function. The state-space representation of the system given by $\mathrm{G}(\mathrm{s})$ is

Matlab code

$$
\begin{aligned}
& \text { num=[2 } 8 \text { 6 6];den=[11 } 8 \text { 16 6]; } \\
& \text { sys_tf=tf(num,den) } \\
& \text { sys_ss=ss(sys_tf) }
\end{aligned}
$$

```
Transfer function:
\[
2 s^{\wedge} 2+8 s+6
\]
\[
s^{\wedge} 3+8 s^{\wedge} 2+16 s+6
\]
```

Answer

$$
\begin{aligned}
& \mathrm{A}=\left[\begin{array}{ccc}
-8 & -4 & -1.5 \\
4 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], \mathrm{B}=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right] \\
& \mathrm{C}=\left[\begin{array}{lll}
1 & 1 & 0.75
\end{array}\right] \text { and } \mathrm{D}=[0]
\end{aligned}
$$

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
-8 & -4 & -1.5 \\
4 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], B=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right] \\
& C=\left[\begin{array}{lll}
1 & 1 & 0.75
\end{array}\right] \text { and } D=[0]
\end{aligned}
$$

Block diagram with x_{1} defined as the leftmost state variable.

$$
\begin{gathered}
x(t)=e^{A t} x(0)+\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau \\
x(t)=\phi(t) x(0)+\int_{0}^{t} \phi(t-\tau) B u(\tau) d \tau
\end{gathered}
$$

We can use the function expm to compute the transition matrix for a given time. The $\operatorname{expm}(A)$ function computes the matrix exponential. By contrast the $\exp (A)$ function calculates $\mathrm{e}^{\mathrm{a}}{ }_{\mathrm{ij}}$ for each of the elements $\mathrm{a}_{\mathrm{ij}} \in \mathrm{A}$.

For the RLC network, the state-space representation is given as:
$\mathrm{A}=\left[\begin{array}{ll}0 & -2 \\ 1 & -3\end{array}\right], \mathrm{B}=\left[\begin{array}{l}2 \\ 0\end{array}\right], \mathrm{C}=\left[\begin{array}{ll}1 & 0\end{array}\right]$ and $\mathrm{D}=[0]$

The initial conditions are $x_{1}(0)=x_{2}(0)=1$ and the input $u(t)=0$. At $t=0.2$, the state transition matrix is calculated as
Phi =
$\gg A=[0-2 ; 1-3], d t=0.2 ;$ Phi $=\operatorname{expm}\left(A^{*} d t\right)$

The state at $\mathrm{t}=0.2$ is predicted by the state transition method to be

$$
\left[\begin{array}{l}
\mathrm{x}_{1} \\
\mathrm{x}_{2}
\end{array}\right]_{\mathrm{t}=0.2}=\left[\begin{array}{cc}
0.9671 & -0.2968 \\
0.1484 & 0.5219
\end{array}\right]\left[\begin{array}{l}
\mathrm{x}_{1} \\
\mathrm{x}_{2}
\end{array}\right]_{\mathrm{t}=0}=\left[\begin{array}{l}
0.6703 \\
0.6703
\end{array}\right]
$$

The time response of a system can also be obtained by using Isim function. The Isim function can accept as input nonzero initial conditions as well as an input function. Using Isim function, we can calculate the response for the RLC network as shown below.

