Z-Transform of common functions

Example - Right-Sided Exponential Sequence (1)

■ Consider $x[n]=a^{n} u[n]$. Because it is nonzero only for $n \geq 0$, this is an example of a right-sided sequence.

$$
X(z)=\sum_{n=-\infty}^{\infty} a^{n} u[n] z^{-n}=\sum_{n=0}^{\infty}\left(a z^{-1}\right)^{n}
$$

For convergence of $X(z)$, we require

$$
\sum_{n=-\infty}^{\infty}\left|a z^{-1}\right|^{n}<\infty
$$

Thus, the ROC is the range of values of z for which $\left|a z^{-1}\right|<1$, or equivalently, $|z|>|a|$. Inside the ROC, the infinite series converges to

$$
X(z)=\frac{1}{1-a z^{-1}}=\frac{z}{z-a} \quad|z|>|a|
$$

Example - Right-Sided Exponential Sequence (2)

- The infinite sum becomes a simple rational function of z inside the ROC.

■ Such a z-transform is determined to within a constant multiplier by its zeros and its poles.

- For this example, one zero: $z=0$ (plotted as o); one pole: $z=\mathrm{a}$ (plotted as x).
- When $|a|<1$, the ROC includes the unit circle.

Example - Left-Sided
 Exponential Sequence

■ Consider $x[n]=-a^{n} u[-n-1]$. Because it is nonzero only for $n \leq-1$, this is an example of a left-sided sequence.

$$
\left.\begin{array}{l}
\begin{array}{rl}
X(z) & =-\sum_{n=-\infty}^{\infty} a^{n} u[-n-1] z^{-n}=-\sum_{n=-\infty}^{-1} a^{n} z^{-n} \\
& =-\sum_{n=1}^{\infty} a^{-n} z^{n}=1-\sum_{n=0}^{\infty}\left(a^{-1} z\right)^{n}
\end{array} \\
\text { ROC Im } \\
\text { and }
\end{array}\right\}
$$

Notes on ROC

$$
\begin{aligned}
& x[n]=a^{n} u[n] \longleftrightarrow X(z)=\frac{1}{1-a z^{-1}}=\frac{z}{z-a} \quad|z|>|a| \\
& x[n]=-a^{-n} u[-n-1] \\
& \longleftrightarrow X(z)=\frac{1}{1-a z^{-1}}=\frac{z}{z-a} \quad|z|<|a|
\end{aligned}
$$

■ As can be seen from the two examples, the algebraic expression or pole-zero pattern does not completely specify the z-transform of a sequence; i.e., the ROC must also be specified.

