Inverse Z
 Transform \& theorems

Example - Two-Sided Exponential Sequence

- Consider the sequence

$$
\begin{array}{r}
x[n]= \\
\quad|z|>\frac{\left(-\frac{1}{3}\right)^{n} u[n]}{\frac{1}{3}}|z|<\frac{1}{2} \hat{\sim} \\
\\
\frac{1}{1+\frac{1}{3} z^{-1}} \frac{1}{1-\frac{1}{2} z^{-1}}
\end{array}
$$

$\operatorname{ROC} \quad \frac{1}{3}<|z|<\frac{1}{2}$
and $\quad X(z)=\frac{1}{1+\frac{1}{3} z^{-1}}+\frac{1}{1-\frac{1}{2} z^{-1}}$

$$
=\frac{2 z\left(z-\frac{1}{12}\right)}{\left(z+\frac{1}{3}\right)\left(z-\frac{1}{2}\right)} \quad \frac{1}{3}<|z|<\frac{1}{2}
$$

z-plane

Re

Example - Finite-Length Sequence

■ Consider the sequence

$$
x[n]= \begin{cases}a^{n}, & 0 \leq n \leq N-1 \\ 0, & \text { otherwise }\end{cases}
$$

Then

$$
\begin{aligned}
X(z) & =\sum_{n=0}^{N-1} a^{n} z^{-n}=\sum_{n=0}^{N-1}\left(a z^{-1}\right)^{n} \\
& =\frac{1-\left(a z^{-1}\right)^{N}}{1-a z^{-1}}=\frac{1}{z^{N-1}} \frac{z^{N}-a^{N}}{z-a}
\end{aligned}
$$

The ROC is determined by $\sum_{n=0}^{N-1}\left|a z^{-1}\right|^{n}$
which requires $|a|<\infty$ and $z \neq 0$

Table 4-1 Common z-Transform Pairs

Sequence	z-Transform	Region of Convergence
$\delta(n)$	$\frac{1}{1-\alpha z^{-1}}$	all z
$\alpha^{n} u(n)$	$\frac{1}{1-\alpha z^{-1}}$	$\|z\|>\|\alpha\|$
$-\alpha^{n} u(-n-1)$	$\frac{\alpha z^{-1}}{\left(1-\alpha z^{-1}\right)^{2}}$	$\|z\|<\|\alpha\|$
$n \alpha^{n} u(n)$	$\frac{\alpha z^{-1}}{\left(1-\alpha z^{-1}\right)^{2}}$	$\|z\|>\|\alpha\|$
$-n \alpha^{n} u(-n-1)$	$\frac{1-\left(\cos \omega_{0}\right) z^{-1}}{1-2\left(\cos \omega_{0}\right) z^{-1}+z^{-2}}$	$\|z\|<\|\alpha\|$
$\cos \left(n \omega_{0}\right) u(n)$	$\frac{\left(\sin \omega_{0}\right) z^{-1}}{1-2\left(\cos \omega_{0}\right) z^{-1}+z^{-2}}$	$\|z\|>1$
$\sin \left(n \omega_{0}\right) u(n)$	$\|z\|>1$	

Properties of Z-Transform

- Linearity

If $x(n)$ has a z-transform $X(z)$ with a region of convergence $R x$, and if $\mathrm{y}(\mathrm{n})$ has a z -transform $\mathrm{Y}(\mathrm{z})$ with a region of convergence Ry,

$$
w(n)=a x(n)+b y(n) \stackrel{z}{\longleftrightarrow} W(z)=a X(z)+b Y(z)
$$

and the ROC of $\mathrm{W}(z)$ will include the intersection of $R x$ and $R y$, that is, Rw contains.

- Shifting property $\quad R_{x} \cap R_{y}$

If $\mathrm{x}(\mathrm{n})$ has a z -transform $\mathrm{X}(\mathrm{z})$,

- Time reversal

$$
x\left(n-n_{0}\right) \stackrel{z}{\longleftrightarrow} z^{-n_{0}} X(z)
$$

If $x(n)$ has a z-transform $X(z)$ with a region of convergence $R x$ that is the annulus ,the z-transform of the time-reversed sequence $x(-n)$ is $\quad \alpha<\mid z<\beta$
and has a region of convergence 1) $\longleftrightarrow x(\xi$ which is denoted by

$$
1 / \beta<|z|<1 / \alpha
$$

Properties of Z-Transform

- Multiplication by an exponential
- If a sequence $\mathrm{x}(\mathrm{n})$ is multiplied by a complex exponential α^{n}.
- Convolution theorm

$$
\alpha^{n} x(n) \stackrel{z}{\longleftrightarrow} X\left(\alpha^{-1} z\right)
$$

If $\mathrm{x}(\mathrm{n})$ has a z -transform $\mathrm{X}(\mathrm{z})$ with a region of convergence R_{x}, and if $\mathrm{h}(\mathrm{n})$ has a z-transform $H(z)$ with a region of convergence R_{h},

$$
y(n)=x(n) * h(n) \stackrel{z}{\longleftrightarrow} Y(z)=X(z) H(z)
$$

The ROC of $Y(z)$ will include the intersection of R_{x} and R_{h}, that is,

$$
R_{y} \text { contains } R_{x} \cap R_{h} \text {. }
$$

With $x(n), y(n)$, and $h(n)$ denoting the input, output, and unit-sample response, respectively, and $\mathrm{X}(\mathrm{z}), \mathrm{Y}(\mathrm{x})$, and $\mathrm{H}(\mathrm{z})$ their z -transforms. The z transform of the unit-sample response is often referred to as the system function.

- Conjugation

If $X(z)$ is the z-transform of $x(n)$, the z-transform of the complex conjugate of $x(n)$ is

$$
x^{*}(n) \stackrel{Z}{\longleftrightarrow} X^{*}\left(z^{*}\right)
$$

Properties of Z-Transform

- Derivative
- If $X(z)$ is the z-transform of $x(n)$, the z-transform of is

$$
n x(n) \stackrel{z}{\longleftrightarrow}-z \frac{d X(z)}{d z}
$$

- Initial value theorem

If $X(z)$ is the z-transform of $x(n)$ and $x(n)$ is equal to zero for $n<0$, the initial value, $x(0)$, maybe be found from $X(z)$ as follows:

$$
x(0)=\lim _{z \rightarrow \infty} X(z)
$$

Table 4-2 Properties of the z-Transform

Property	Sequence	z-Transform	Region of Convergence
Linearity	$a x(n)+b y(n)$	$a X(z)+b Y(z)$	Contains $R_{x} \cap R_{y}$
Shift	$x\left(n-n_{0}\right)$	$z^{-n_{0}} X(z)$	R_{x}
Time reversal	$x(-n)$	$X\left(z^{-1}\right)$	$1 / R_{x}$
Exponentiation	$\alpha^{n} x(n)$	$X\left(\alpha^{-1} z\right)$	$\|\alpha\| R_{x}$
Convolution	$x(n) * y(n)$	$X(z) Y(z)$	Contains $R_{x} \cap R_{y}$
Conjugation	$x^{*}(n)$	$X^{*}\left(z^{*}\right)$	R_{x}
Derivative	$n x(n)$	$-z \frac{d X(z)}{d z}$	R_{x}

Note: Given the z-transforms $X(z)$ and $Y(z)$ of $X(n)$ and $y(n)$, with regions of convergence R_{X} and R_{y}, respectively, this table lists the z-transforms of sequences that are formed from $x(n)$ and $y(n)$.

