Inverse Z Transform & theorems

Example – Two-Sided Exponential Sequence

Consider the sequence

Example – Finite-Length Sequence

Consider the sequence

$$x[n] = \begin{cases} a^n, & 0 \le n \le N - 1 \\ 0, & \text{otherwise} \end{cases}$$

Then

$$X(z) = \sum_{n=0}^{N-1} a^n z^{-n} = \sum_{n=0}^{N-1} (az^{-1})^n$$
$$= \frac{1 - (az^{-1})^N}{1 - az^{-1}} = \frac{1}{z^{N-1}} \frac{z^N - a^N}{z - a}$$

The ROC is determined by $\sum_{n=0}^{N-1} |az^{-1}|^n$

which requires $|a| < \infty$ and $z \neq 0$

Table 4-1 Common z-Transform Pairs

Sequence	z-Transform	Region of Convergence
$\delta(n)$		all z
$\alpha^n u(n)$	$\frac{1}{1-\alpha z^{-1}}$	$ z > \alpha $
$-\alpha^n u(-n-1)$	$\frac{1}{1-\alpha z^{-1}}$	$ z < \alpha $
$n\alpha^n u(n)$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z > \alpha $
$-n\alpha^n u(-n-1)$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z < \alpha $
$\cos(n\omega_0)u(n)$	$\frac{1 - (\cos \omega_0)z^{-1}}{1 - 2(\cos \omega_0)z^{-1} + z^{-2}}$	z > 1
$\sin(n\omega_0)u(n)$	$\frac{(\sin \omega_0)z^{-1}}{1 - 2(\cos \omega_0)z^{-1} + z^{-2}}$	z > 1

Properties of Z-Transform

Linearity

If x(n) has a z-transform X(z) with a region of convergence Rx, and if y(n) has a z-transform Y(z) with a region of convergence Ry,

$$w(n) = ax(n) + by(n) \xleftarrow{Z} W(z) = aX(z) + bY(z)$$
 and the ROC of W(z) will include the intersection of Rx and Ry, that is, Rw contains .

- Shifting property $R_x \cap R_y$ If x(n) has a z-transform X(z),
- Time reversal

$$x(n-n_0) \longleftrightarrow z^{-n_0} X(z)$$

If x(n) has a z-transform X(z) with a region of convergence Rx that is the annulus , the z-transform of the time-reversed sequence x(-n) is $\alpha < |z| < \beta$

and has a region of convergence $(z) \leftarrow X(z)$ which is denoted by

$$1/\beta < |z| < 1/\alpha$$

$$1/R_x$$

Properties of Z-Transform

- Multiplication by an exponential
 - If a sequence x(n) is multiplied by a complex exponential α^n .

$$\alpha^n x(n) \stackrel{Z}{\longleftrightarrow} X(\alpha^{-1}z)$$

Convolution theorm

If x(n) has a z-transform X(z) with a region of convergence R_x , and if h(n) has a z-transform H(z) with a region of convergence R_h ,

$$y(n) = x(n) * h(n) \stackrel{Z}{\longleftrightarrow} Y(z) = X(z)H(z)$$

The ROC of Y(z) will include the intersection of R_x and R_h , that is,

$$R_v$$
 contains $R_x \cap R_h$.

With x(n), y(n), and h(n) denoting the input, output, and unit-sample response, respectively, and X(z), Y(x), and H(z) their z-transforms. The z-transform of the unit-sample response is often referred to as the system function.

Conjugation

If X(z) is the z-transform of x(n), the z-transform of the complex conjugate of x(n) is

$$x^*(n) \stackrel{Z}{\longleftrightarrow} X^*(z^*)$$

Properties of Z-Transform

Derivative

If X(z) is the z-transform of x(n), the z-transform of is

$$nx(n) \stackrel{Z}{\longleftrightarrow} -z \frac{dX(z)}{dz}$$

Initial value theorem

If X(z) is the z-transform of x(n) and x(n) is equal to zero for n<0, the initial value, x(0), maybe be found from X(z) as follows:

$$x(0) = \lim_{z \to \infty} X(z)$$

Table 4-2 Properties of the z-Transform

Property	Sequence	z-Transform	Region of Convergence
Linearity	ax(n) + by(n)	aX(z) + bY(z)	Contains $R_x \cap R_y$
Shift	$x(n-n_0)$	$z^{-n_0}X(z)$	R_x
Time reversal	x(-n)	$X(z^{-1})$	$1/R_x$
Exponentiation	$\alpha^n x(n)$	$X(\alpha^{-1}z)$	$ \alpha R_x$
Convolution	x(n) * y(n)	X(z)Y(z)	Contains $R_x \cap R_y$
Conjugation	$x^*(n)$	$X^*(z^*)$	R_x
Derivative	nx(n)	$-z\frac{dX(z)}{dz}$	R_{x}

Note: Given the z-transforms X(z) and Y(z) of x(n) and y(n), with regions of convergence R_x and R_y , respectively, this table lists the z-transforms of sequences that are formed from x(n) and y(n).