## Solution of difference equations using one-sided ZT

## Properties of z-Transform

(1) Time Shifting $\quad x\left[n-n_{0}\right] \longleftrightarrow z^{-n_{0}} X(z)$,

The rationality of $X(z)$ unchanged, ROC unchanged
except for the possible addition or deletion of the origin or infinity

$$
\begin{aligned}
& n_{0}>0 \Rightarrow \text { ROC } z \neq 0 \text { (maybe) } \\
& n<0 \Rightarrow \operatorname{ROC} z \neq \infty \text { (mavbe) }
\end{aligned}
$$

(2) $z$-Domain Differentiation

$$
n x[n] \longleftrightarrow-z \frac{d X(z)}{d z}
$$

same ROC
(3) Linearity: $a x[n]+b y[n] \longleftrightarrow a X(z)+b Y(z)$

## Properties of z-Transform

(4) Z-scale Property: $a^{n} x[n] \longleftrightarrow X\left(\frac{z}{a}\right)$
(5) Initial Value : $x[0]=\lim _{z \rightarrow \infty} X(z)$
(6) Final Value: $x[\infty]=\lim _{z \rightarrow 1}(z-1) X(z)$ (Applicable only if the ROC of $(z-1) X(z)$ includes the unit circle, i.e., all the poles are inside the unit circle)
(7) Convolution: $h[n] * x[n] \longleftrightarrow H(z) X(z)$

## Rational z-Transform

For most practical signals, the $z$-transform can be expressed as a ratio of two polynomials

$$
X(z)=\frac{N(z)}{D(z)}=\frac{b_{0}\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{M}\right)}{a_{0}\left(z-p_{1}\right)\left(z-p_{2}\right) \cdots\left(z-p_{N}\right)}
$$

where $z_{1}, z_{2}, \cdots, z_{M}$ are the zeroes of $X(z)$,i.e., the roots of the numerator poly nomial and $p_{1}, p_{2}, \cdots, p_{N}$ are the poles of $X(z)$, i.e., the roots of the denominator polynomial.

## Rational z-Transform

It is customary to normalize the denominator polynomial to make its leading coefficients one, i.e.,

$$
\begin{aligned}
X(z)=\frac{N(z)}{D(z)} & =\frac{b_{0}\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{M}\right)}{\left(z-p_{1}\right)\left(z-p_{2}\right) \cdots\left(z-p_{N}\right)} \\
& =\frac{b_{0} z^{M}+b_{1} z^{M-1}+\cdots+b_{M}}{z^{N}+a_{1} z^{N-1}+\cdots+a_{N}}
\end{aligned}
$$

Also, it $x[n]$ is a causal signal, then $X(z)$ will be a proper rational polynomial with $M \leq N$, i.e., \# of zeroes $\leq \#$ of poles.

