Applications to solution of difference equations, Pulse Transfer Function

Contd...

Inverse z-Transform

$$
\begin{aligned}
& \begin{aligned}
& X(z)=X\left(r e^{j \omega}\right)= \mathcal{F}\left\{x[n] r^{-n}\right\}, \text { where } z=r e^{j \omega} \in \mathrm{ROC} \\
& \text { DTFT } \\
& x[n] r^{-n}=\mathcal{F}^{-1}\left\{X\left(r e^{j \omega}\right)\right\}=\frac{1}{2 \pi} \int_{2 \pi} X\left(r e^{j \omega}\right) e^{j \omega n} d \omega \\
& x[n]=\frac{1}{2 \pi} \int_{2 \pi} X\left(r e^{j \omega}\right) \underbrace{r^{n} e^{j \omega n}}_{z^{n}} d \omega \\
&=\frac{1}{2 \pi j} \oint X(z) z^{n-1} d z \quad \text { (A contour integral) }
\end{aligned}
\end{aligned}
$$

where, for a fixed $\mathrm{r}, z=r e^{j \omega} \Rightarrow d z=j r e^{j \omega} d \omega \Rightarrow d \omega=\frac{1}{j} z^{-1} d z$

Synthetic Division Method

- Write $X(z)$ as a normalized rational polynomial in z^{-1} by multiplying the numerator and denominator by z^{-N}

$$
X(z)=\frac{z^{-r}\left(b_{0}+b_{1} z^{-1}+\cdots+b_{M} z^{-M}\right)}{1+a_{1} z^{-1}+\cdots+a_{N} z^{-N}}
$$

- Perform long division of the numerator polynomial by the denominator polynomial to produce the quotient polynomial $q\left(z^{-1}\right)$
- Identify coefficients in the power series definition of $X(z)$ where

$$
\begin{aligned}
X(z)=z^{-r}\left[q(0)+q(1) z^{-1}+q(2) z^{-2}+\cdots\right] \\
r=0 \rightarrow x[n]=q[n], \quad r \geq 0 \rightarrow x[n]=\left\{\begin{array}{cc}
0, & 0 \leq n \leq r \\
q[n-r], & r \leq n<\infty
\end{array}\right.
\end{aligned}
$$

Ex. Find the inverse z-transform of $X(z)=3 z^{3}-z+2 z^{-4}$

$$
\begin{gathered}
X(z)=3 z^{-(-3)}-z^{-(-1)}+2 z^{-4} \\
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}=\cdots x[-3] z^{-(-3)}+x[-2] z^{-(-2)}+x[-1] z^{-(-1)} \\
\\
+x[0]+x[1] z^{-1}+x[2] z^{-2}+x[3] z^{-3}
\end{gathered}
$$

Equating coefficients,

$$
x[n]=\{\cdots, 0,3,0,-1, \underset{\uparrow}{0}, 0,0,0,2,0, \cdots\}
$$

Remarks: This method doesn't produce a closed-form expression for $x[n]$

Z-Transform Solution of Linear Difference Equations

- We can use z-transform to solve the difference equation that characterizes a causal, linear, time invariant system. The following expressions are especially useful to solve the difference equations:
- $z\left[y[(n-1) T]=z^{-1} Y(z)+y[-T]\right.$
- $Z[y(n-2) T]=z^{-2} Y(z)+z^{-1} y[-T]+y[-2 T]$
- $Z[y(n-3) T]=z^{-3} Y(z)+z^{-2} y[-T]+z^{-1} y[-2 T]+$
$y[-3 T]$

Example: Consider the following difference equation:
where the initial conditions are $\mathrm{y}[-\mathrm{T}]=-10$ and $\mathrm{y}[-2 \mathrm{~T}]=20$. $\mathrm{Y}[\mathrm{nT}]$ is the output and $\mathrm{x}[\mathrm{nT}]$ is the unit step input.

Solution:

Computing the z-transform of the difference equation gives
$\mathrm{Y}(\mathrm{z})-0.1\left[\mathrm{z}^{-1} \mathrm{Y}(\mathrm{z})+\mathrm{y}[-\mathrm{T}]\right]-0.02\left[\mathrm{z}^{-2} \mathrm{Y}(\mathrm{z})+\mathrm{z}^{-1} \mathrm{y}[-\mathrm{T}]+\mathrm{y}[-\right.$ $2 \mathrm{~T}]$] $=2 X(z)-z^{-1} X(z)$
Substituting the initial conditions we get
$\mathrm{Y}(\mathrm{z})-0.1 \mathrm{z}^{-1} \mathrm{Y}(\mathrm{z})+1-0.02 \mathrm{z}^{-2} \mathrm{Y}(\mathrm{z})-0.2 \mathrm{z}^{-1}-0.4=$

$$
\left(2-z^{-1}\right) X(z)
$$

$$
\begin{aligned}
& \left(1-0.1 z^{-1}-0.02 z^{-2}\right) Y(z)=\left(2-z^{-1}\right) \frac{1}{1-z^{-1}}-0.2 z^{-1}-0.6 \\
& Y(z)\left[1-0.2 z^{-1}-0.02 z^{-2}\right]=\frac{2-z^{-1}}{1-z^{-1}}-0.2 z^{-1}-0.6 \\
& Y(z)=\frac{1.4-0.6 z^{-1}+0.2 z^{-2}}{\left(1-z^{-1}\right)\left(1-0.1 z^{-1}-0.02 z^{-2}\right)}=\frac{1.4-0.6 z^{-1}+0.2 z^{-2}}{\left(1-z^{-1}\right)\left(1-0.2 z^{-1}\right)\left(1+0.1 z^{-1}\right)} \\
& =\frac{1.4 z^{3}-0.6 z^{2}+0.2 z}{(z-1)(z-0.2)(z+0.1)} \\
& \frac{Y(z)}{z}=\frac{1.136}{z-1}+\frac{-0.567}{z-0.2}+\frac{0.830}{z+0.1} \\
& Y(z)=1.136 \frac{1}{1-\mathrm{z}^{-1}}-0.567 \frac{1}{1-0.2 \mathrm{z}^{-1}}+0.830 \frac{1}{1+0.1 \mathrm{z}^{-1}}
\end{aligned}
$$

and the output signal $y[n T]$ is
$y[n T]=1.136 u[n T]-0.567(0.2)^{n} u[n T]+0.830(-0.1)^{n} u[n T]$

