E-mail Security policy

Security Services for E-mail

- privacy
- authentication
- integrity
- non-repudiation
- anonymity
- proof of submission
- proof of delivery
- message flow confidentiality, etc.

Key Management

- A per-message symmetric key is used for message encryption,
- which is conveyed in the mail, encrypted under a long-term key (typically a public key)
- Long-term keys can be established,
 - offline
 - online, with help from a trusted third party
 - online, through a webpage (for public keys)

Multiple Recipients

- Message key will be encrypted under each recipients long term key in the message header.
 - Bob's ID, K_{Bob}{S}
 - Carol's ID, K_{Carol}{S}
 - Ted's ID, K_{Ted}{S}
 - S{m}
- E.g.:

```
To: Bob, Carol, Ted
From: Alice
Key-info: Bob-4276724736874376
Key-info: Carol-78657438676783457
Key-info: Ted-12873486743009
Msg-info: UHGuiy77t65fhj87oi....
```

Text Format Issues

- Mail gateways/forwarders may modify the format of the message (wrapping long lines, end-of-line character, high order bits, etc.), causing the integrity check to fail
- Encode messages in a format supported by all mailers. 6-bit representation, no long lines, etc. (similar to uuencode)

Text Format Issues (cont'd)

- Problem: Non-supportive clients should be able to read authenticated (but not encrypted) messages, which they no longer can.
- Two options:
 - MAC without encoding (subject to corruption by mail routers)
 - Encode & MAC/encrypt (may not be readable at the other end)

Providing Different Services

- confidentiality: by encryption
- auth./integrity: by signature or MAC
- non-repudiation: by signature
- some eccentric services,
 - anonymity
 - message flow confidentiality
 - non-repudiation with secret keys
- can be provided by TTP support.

PEM & S/MIME

- Privacy Enhanced Mail (PEM)
 - Developed by IETF, to add encryption, source authentication & integrity protection to e-mail
 - Allows both public & secret long-term keys Message key is always symmetric
 - Specifies a detailed certification hierarchy
- Secure/MIME (S/MIME)
 - PEM never took off; CA hierarchy difficult to realize
 - S/MIME: PEM design incorporated into MIME

PEM Key Exchange & Encryption

- "Interchange keys": Users' long-term PEM keys
 - public (a detailed PKI is defined)
 - secret (pre-shared symmetric keys)
- Encryption
 - A symmetric per-message key is sent encrypted under the interchange key.
 - The message is encrypted under the per-message key (typically with DES in CBC mode)
- Authentication
 - Message is authenticated by a "MIC"
 (Q: Any authentication for the per-message key?)

PEM Certificate Hierarchy

- The root CA: "Internet Policy Registration Authority" (IPRA)
- Policy Certification Authorities": Second-level, CAcertifying CAs, each with a different policy:
 - High Assurance (HA): super-secure
 - implemented on secure platforms
 - regulates that the child CAs (also HACAs) enforce the same rules
 - Discretionary Assurance (DA): secure
 - requires that the child CAs own their names
 - No Assurance (NA): no constraints
 - can be used to certify Internet personas (pseudonyms)

Lower-level CAs, certifying individuals or other CAs

S/MIME vs. PEM

- Incorporated into MIME; no other encoding
- Any sequence of sign & encrypt is supported (each as a recursive MIME encapsulation)
- Has more options than PEM
- ASN.1 header encoding
- No prescribed certification hierarchy
- Has a good prospect of deployment for commercial & organizational usage

Pretty Good Privacy (PGP)

- Popular mail & file encryption tool
- Developed by Phil Zimmermann, 1991
- Based on RSA, IDEA, MD5 (later DSS, ElGamal (DH), 3DES, SHA1)
- Many different versions have emerged (from PGP, from GNU (GPG), from IETF (Open PGP))

Publishing and Notification Security Policy

- It is a commonly used pattern for interobject communication.
- Notification: may have specifications that define a standard web services approach to notification using a topic based publish /subscribe pattern.