
Software measurement and metrics

 Software measurement is concerned with deriving a

numeric value for an attribute of a software product

or process.

 This allows for objective comparisons between

techniques and processes.

 Although some companies have introduced

measurement programmes, most organisations still

don’t make systematic use of software

measurement.

 There are few established standards in this area.

 Any type of measurement which relates to a
software system, process or related documentation
• Lines of code in a program, the Fog index, number of

person-days required to develop a component.

 Allow the software and the software process to
be quantified.

 May be used to predict product attributes or to
control the software process.

 Product metrics can be used for general predictions
or to identify anomalous components.

Software metric

Predictor and control metrics

 A software property can be measured.

 The relationship exists between what we can

measure and what we want to know. We can only

measure internal attributes but are often more

interested in external software attributes.

 This relationship has been formalised and

validated.

 It may be difficult to relate what can be measured to

desirable external quality attributes.

Metrics assumptions

Internal and external attributes

The measurement process

 A software measurement process may be

part of a quality control process.

 Data collected during this process should be

maintained as an organisational resource.

 Once a measurement database has been

established, comparisons across projects

become possible.

Product measurement process

Data collection

 A metrics programme should be based on a

set of product and process data.

 Data should be collected immediately (not in

retrospect) and, if possible, automatically.

 Three types of automatic data collection

• Static product analysis;

• Dynamic product analysis;

• Process data collation.

Data accuracy

 Don’t collect unnecessary data

• The questions to be answered should be

decided in advance and the required data

identified.

 Tell people why the data is being collected.

• It should not be part of personnel evaluation.

 Don’t rely on memory

• Collect data when it is generated not after a

project has finished.

 A quality metric should be a predictor of

product quality.

 Classes of product metric

• Dynamic metrics which are collected by measurements

made of a program in execution;

• Static metrics which are collected by measurements

made of the system representations;

• Dynamic metrics help assess efficiency and reliability;

static metrics help assess complexity, understandability

and maintainability.

Product metrics

Dynamic and static metrics

 Dynamic metrics are closely related to software

quality attributes

• It is relatively easy to measure the response time of a

system (performance attribute) or the number of failures

(reliability attribute).

 Static metrics have an indirect relationship with

quality attributes

• You need to try and derive a relationship between these

metrics and properties such as complexity,

understandability and maintainability.

Software product metrics

Software metric Description

Fan in/Fan-out Fan-in is a measure of the number of functions or methods that call some other function

or method (say X). Fan-out is the number of functions that are called by function X. A

high value for fan-in means that X i s tightly coupled to the rest of the design and

changes to X will have extensive knock-on eff ects. A high value for fan-out suggests

that the overall complexity of X may be high because of the complexity of the control

logic needed to coordinate the called components.

Length of code This is a measure of the size of a program. Generally, the larger the size of the code of a

component, the more complex and error-prone that component is likely to be. Length of

code has been shown to be one of the most reliable metrics for predicting error-

proneness in components.

Cyclomatic complexity This is a measure of the control complexity of a program. This control complexity may

be related to program understandability. I discuss how to compute cyclomatic

complexity in Chapter 22.

Length of identifiers This is a measure of the average length of distinct identifiers in a program. The longer

the identifiers, the more likely they are to be m eaningful and hence the more

understandable the program.

Depth of conditional

nesting

This is a measure of the depth of nesting of if-statements in a program. Deeply nested if

statements are hard to understand and are potentially error-prone.

Fog index This is a measure of the average length of words and sentences in documents. The higher

the value fo r the Fog index, the more difficult the document is to understand.

Object-oriented metrics

Object-oriented

metric

Description

Depth of inheritance

tree

This represents the number of discrete levels in the inheritance tree where sub-

classes inherit attributes and operations (methods) from super-classes. The

deeper the inheritance tree, the more complex the design. Many different object

classes may have to be understood to understand the object classes at the leaves

of the tree.

Method fan-in/fan-

out

This is directly related to fan-in and fan-out as described above and means

essentially the same thing. However, it may be appropriate to make a

distinction between calls from other methods within the object and calls from

external methods.

Weighted methods

per class

This is the number of methods that are included in a class weighted by the

complexity of each method. Therefore, a simple method may have a complexity

of 1 and a large and complex method a much high er value. The larger the value

for this metric, the more complex the object class. Complex ob jects are more

likely to be more difficult to understand. They may not be logically cohesive so

canno t be reused effectively as super-classes in an inheritance tree.

Number of

overriding

operations

This is the number of operations in a super-class that are over-ridden in a sub-

class. A high va lue for this metric indicates that the super-class used may not be

an appropriate parent for the sub-class.

Measurement analysis

 It is not always obvious what data means

• Analysing collected data is very difficult.

 Professional statisticians should be

consulted if available.

 Data analysis must take local circumstances

into account.

Measurement surprises

 Reducing the number of faults in a program

leads to an increased number of help desk

calls

• The program is now thought of as more reliable

and so has a wider more diverse market. The

percentage of users who call the help desk may

have decreased but the total may increase;

• A more reliable system is used in a different

way from a system where users work around

the faults. This leads to more help desk calls.

Key points

 Software quality management is concerned
with ensuring that software meets its
required standards.

 Quality assurance procedures should be
documented in an organisational quality
manual.

 Software standards are an encapsulation of
best practice.

 Reviews are the most widely used approach
for assessing software quality.

Key points

 Software measurement gathers information

about both the software process and the

software product.

 Product quality metrics should be used to

identify potentially problematical

components.

 There are no standardised and universally

applicable software metrics.

