Ch 12- Control Charts for Attributes

- p chart fraction defective
- np chart number defective

• c, u charts – number of defects

Defect vs. Defective

• 'Defect' – a single nonconforming quality characteristic.

• 'Defective' – items having one or more defects.

Legal Concerns with Term 'Defect'

- Often called 'nonconformity'.
- Possible Legal Dialog
 - Does your company make a lot of 'defects'?
 - Enough to track them on a chart ?
 - If they are not 'bad', why do you call them 'defects', sounds bad to me.
 - So you knowingly track and ship products with 'defects'?

Summary of Control Chart Types and Limits Table 12.3

These are again '3 sigma' control limits

p, np - Chart

- P is fraction nonconforming.
- np is total nonconforming.
- Charts based on Binomial distribution.
- Sample size must be large enough (example p=2%)
- Definition of a nonconformity.
- Probability the same from item to item.

c, u - Charts

c and u charts deal with nonconformities.
– c Chart – total number of nonconformities.
– u Chart – nonconformities per unit.

- Charts based on Poisson distribution.
- Sample size, constant probabilities.

	A	В	С	D	E	F	G	Н	
1	Number N	Number Nonconforming (np) Chart							
2	This spreadsheet is designed for up to 50 samples. Enter data ONLY in yellow-shaded cells.						cells.		
3	Each samp	Each sample must have a constant sample size; enter this in cell C6.							
4	Click on the	Click on the sheet tab to display the control chart (some rescaling may be needed).							
5									
6	Sample s	ize	100						
7									
8	Average (np-bar)		2.2						
9	Standard deviation		1.466833324						
10									
11		Number							
12	Sample	Nonconforming	LCLnp	CL	UCLnp				
13	1	3	0	2.2	6.6005				
14	2	1	0	2.2	6.6005				
15	3	0	0	2.2	6.6005				
16	4	0	0	2.2	6.6005				
17	5	2	0	2.2	6.6005				
18	6	5	0	2.2	6.6005				
19	7	3	0	2.2	6.6005				
20	8	6	0	2.2	6.6005				
21	9	1	0	2.2	6.6005				
22	10	4	0	2.2	6.6005				
23	11	0	0	2.2	6.6005				
24	12	2	0	2.2	6.6005				
25	13	1	0	2.2	6.6005				
26	14	3	0	2.2	6.6005				
27	15	4	0	2.2	6.6005				
28	16	1	0	2.2	6.6005				
- 29	17	1	0	2.2	6.6005				
30	18	2	0	2.2	6.6005				
31	19	5	0	2.2	6.6005				
32	20	2	0	2.2	6.6005				
33	21	3	0	2.2	6.6005				
34	22	4	0	2.2	6.6005				
35	23	1	0	2.2	6.6005				
36	24	0	0	2.2	6.6005				
37	25	1	0	2.2	6.6005				

	A	В	С	D	E	F	G	Н
1	Average Number of Defects (c) Chart							
2	This spreadsheet is designed for up to 50 samples. Enter data ONLY in yellow-shaded cells.							
3	Click on the sheet tab to display the control chart (some rescaling may be needed).							
4								
5	Average (c-l	bar)	1.8					
6	Standard de	eviation	1.3416	640786				
- 7 -								
8		Number						
9	Sample	of Defects	LCLc	CL	UCLc			
10	1	2	0	1.8	5.824922			
11	2	3	0	1.8	5.824922			
12	3	0	0	1.8	5.824922			
13	4	1	0	1.8	5.824922			
14	5	3	0	1.8	5.824922			
15	6	5	0	1.8	5.824922			
16	7	3	0	1.8	5.824922			
17	8	1	0	1.8	5.824922			
18	9	2	0	1.8	5.824922			
19	10	2	0	1.8	5.824922			
20	11	0	0	1.8	5.824922			
21	12	1	0	1.8	5.824922			
22	13	0	0	1.8	5.824922			
23	14	2	0	1.8	5.824922			
24	15	4	0	1.8	5.824922			
25	16	1	0	1.8	5.824922			
26	17	2	0	1.8	5.824922			
27	18	0	0	1.8	5.824922			
28	19	3	0	1.8	5.824922			
29	20	2	0	1.8	5.824922			
30	21	1	0	1.8	5.824922			
31	22	4	0	1.8	5.824922			
32	23	0	0	1.8	5.824922			
33	24	0	0	1.8	5.824922			
34	25	3	0	1.8	5.824922			

How to Interpret Attribute Charts

• Points beyond limits- primary test.

- Below lower limits means process has improved.

- Zone rules do not apply.
- Rules for trends, shifts do apply.

Only get One Chart !!

Examples of When to Use

- p,np charts–
 - Number of nonconforming cables is found for 20 samples of size 100.
 - Number of nonconforming floppy disks is found for samples of 200 for 25 trials.

- c,u charts-
 - Number of paint
 blemishes on auto
 body observed for 30
 samples.
 - Number of
 imperfections in bond
 paper by area
 inspected and number
 of imperfections.

Control Chart Selection

Comparison of Variables v. Attributes

• Variables

- Fit certain cases.
- Both mean and variation information.
- More expensive?
- Identify mean shifts sooner before large number nonconforming.

• <u>Attributes</u>

- Fit certain cases taste, color, etc.
- Larger sample sizes.
- Provides summary level performance.
- Must define nonconformity.

When are Shifts Detected ?

Variables v. Attributes

- Both have advantages.
- At High levels Attribute charts, identify problem areas.

• At Lower levels – Variables charts, quantitative problem solving tools.

Intro to Acceptance Sampling

Acceptance Sampling –

a historically significant topic but less used today.

• Part of Ch. 11 on Inspection Methods.

• Still used in some applications today.

History and Status

- Used extensively in WW II.
- Many Mil-Spec plans developed (105-E, ANSI/ASQC Z1.4-1993).

- Still popular as a defense procurement tool.
 Very large lots, screening tool.
 - Low bid suppliers no history.

Acceptance Sampling Flow Chart

Role of Producer and Consumer

Risk is a 'good' lot will be rejected and sent back.

Take a Sample Size 'n', Accept if 'c' or less.

Risk is a 'bad' lot will be accepted.

Terminology

- **Producer's risk** risk associated with rejecting a lot of 'good' quality.
- Acceptable Quality Level (AQL) Numerical definition of a 'good' lot, associated with the producer's risk.
- **Consumer's risk** risk of accepting a 'poor' lot.
- Limiting Quality Level Numerical definition of a 'poor' lot, associated with the consumer's risk.

Examples

- Producer's risk is 5% for an AQL of 0.02.
 - Means batches that are 2% nonconforming are good and prefer to reject these no more than 5% of the time.
- Consumer's risk is 10% for an LQL of 0.08.
 - Means batches that are 8% nonconforming are bad and prefer to accept these only 10% of the time.

Operating Characteristic (OC) Curve

- Defines the performance of a sampling plan.
- Plots
 - probability of acceptance versus
 - proportion nonconforming (p).

Ideal OC Curve

Actual OC Curves

- Are determined by sample size [n] and acceptance number [c].
 - Accept the lot if 'c' or fewer nonconforming are obtained, reject if more.
- OK to assume Binomial distribution (if lot size is 10x sample size).
- Calculate Paccept for range of incoming p levels.

Sample problem

• Given a lot size of N=2000, a sample size n=50, and an acceptance number c=2.

• Calculate the OC curve for this plan.

Create OC Curve

$$b(x) = {n \choose x} p^{x} (1-p)^{(n-x)} x = 0,1,..n$$

Probability of accepting is obtaining c=2 or less nonconforming items in samples of size n=50.

Vary p from 0 to 0.15 (what if p =)

Acceptance Sampling

• <u>Pros</u>

- 1. Vary level of risk in decisions.
- 2. Inexpensive, less work than 100% inspection.
- 3. Flexibility vary plan based on history.
- 4. Lots rejected pressure on supplier.

<u>Cons</u>

- 1. Plan to accept bad quality.
- 2. Detects bad quality, not prevention or improvement.
- 3. Deming views on inspection.
- 4. Risk of rejecting 'good' lots.

Sample Calculations

- Binomial table only goes up to n=20.
- Approximate Binomial by Poisson, u=np.
- Calculate p(2 or less). This is Paccept.
- Example n=50, p=0.03, u=1.5. P(x≤2)=0.809.
- Vary p from 0 to 0.15.

Single sampling plan n = 50, c = 2

Producer and Consumer Risk

- Assume AQL(acceptable quality level) is 0.01. Then Paccept = .986.
- Producer's Risk is 1-0.986 = 0.014.

- Assume LQL(limiting quality level) is 0.11. Then Paccept = 0.076.
- Consumer's Risk is 0.076.

Designing Plan Performance

• Vary n and c to obtain different OC curves.

• Single and multiple sampling.

• Refer to standard published sampling plans.

Double Sampling Plan

- Application of double sampling requires that a first sample of size *n1* is taken at random from the (large) lot. The number of defectives is then counted and compared to the first sample's acceptance number *a1* and rejection number *r1*. Denote the number of defectives in sample 1 by *d1* and in sample 2 by *d2*, then:
 - If $dl \le al$, the lot is accepted. If $dl \ge rl$, the lot is rejected. If $al \le dl \le rl$, a second sample is taken.
- If a second sample of size n2 is taken, the number of defectives, d2, is counted. The total number of defectives is D2 = d1 + d2. Now this is compared to the acceptance number a2 and the rejection number r2 of sample 2. In double sampling, r2 = a2 + 1 to ensure a decision on the sample.
 - If $D2 \le a2$, the lot is accepted. If $D2 \ge r2$, the lot is rejected.

Vary n and c

Vary n and c

Class Problem

• Acceptance Sampling Plan – n=30,c=1

• Draw the OC Curve

- What is Producer's risk if AQL is 0.02.
- What is Consumer's risk if LQL is 0.1.

OC Curve Worksheet					
n=30, o	c=1				
р	np (=u)	Paccept (x<=1)			
0		1			
0.02					
0.04					
0.06					
0.08					
0.1					
0.12					
Plot Paccept vs. p					