Phases of Quality Assurance

The least progressive

The most progressive

Inspection: Appraisal of good/service quality

• How Much (sample size) /How Often (hourly, daily)

Inspection

• Where/When

- Raw materials
- Finished products

- Before a costly operation, PhD comp. exam before candidacy
- Before an irreversible process, firing pottery
- Before a covering process, painting, assembly
- Centralized vs. On-Site, my friend checks quality at cruise lines

Examples of Inspection Points

Type of business	Inspection points	Characteristics
Fast Food	Cashier Counter area	Accuracy Appearance, productivity
	Building Kitchen	Appearance Health regulations
Hotel/motel	Parking lot Accounting Building Main desk	Safe, well lighted Accuracy, timeliness Appearance, safety Waiting times
Supermarket	Cashiers Deliveries	Accuracy, courtesy Quality, quantity

Statistical Process Control (SPC)

- SPC: Statistical evaluation of the output of a process during production
- The Control Process
 - Define
 - Measure
 - Compare to a standard
 - Evaluate
 - Take corrective action
 - Evaluate corrective action

Statistical Process Control

- Shewhart's classification of variability: common cause vs. assignable cause
- Variations and Control
 - Random variation: Natural variations in the output of process, created by countless minor factors, e.g. temperature, humidity variations.
 - Assignable variation: A variation whose source can be identified. This source is generally a major factor, e.g. tool failure.

Mean and Variance

• Given a population of numbers, how to compute the mean and the variance?

Statistical Process Control

- From a large population of goods or services (random if possible) a sample is drawn.
 - Example sample: Midterm grades of BA3352 students whose last name starts with letter R {60, 64, 72, 86}, with letter S {54, 60}
 - Sample size= n
 - Sample average or sample mean= \overline{x}
 - Sample range= R
 - Standard deviation of sample means=

 $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$ where σ : Standard deviation of the population

Sampling Distribution

Sampling distribution is the distribution of sample means.

Grouping reduces the variability.

Normal Distribution

Excel statistical functions : normdist(x, mean, st_dev ,0) normal pdf at x. Excel statistical functions : normdist(x, mean, st_dev ,1) normal cdf at x.

Excel statistical functions:

Cumulative function (cdf) at x : normdist(*x*, *mean*, *st*_*dev*,1) Inverse function of cdf at "prob": norminv(*prob*, *mean*, *st*_*dev*)

Normal Probabilities: Example

- If temperature inside a firing oven has a normal distribution with mean 200 °C and standard deviation of 40 °C, what is the probability that
 - The temperature is lower than 220 °C =normdist(220,200,40,1)
 - The temperature is between 190 °C and 220°C =normdist(220,200,40,1)-normdist(190,200,40,1)

Control Limits

Process is in control if sample mean is between control limits. These limits have nothing to do with product specifications!

Setting Control Limits: Hypothesis Testing Framework

- Null hypothesis: Process is in control
- Alternative hypothesis: Process is out of control
- Alpha=P(Type I error)=P(reject the null when it is true)= P(out of control when in control)
- Beta=P(Type II error)=P(accept the null when it is false)
 P(in control when out of control)
- If LCL decreases and UCL increases what happens to
 - Alpha ?
 - Beta?
- Not possible to target alpha and beta simultaneously, control charts target a desired level of **Alpha**.

LCL = norminv($\alpha/2$, mean, st_dev) UCL = norminv($1 - \alpha/2$, mean, st_dev)

Control Chart

Observations from Sample Distribution

Control Charts

- Control charts for variables (measurable quantities), e.g. length, temperature
 - Mean control charts
 - To check mean
 - Range control charts
 - To check variability
- Control charts for attributes, e.g. fit, defective
 - p-charts
 - To check proportion of defectives (occurrences)
 - c-charts
 - To check the number of defectives (occurrences)