
Types of Errors

• Hard errors: The component is dead.

• Soft errors: A signal or bit is wrong, but it doesn’t

mean the component must be faulty

• Note: You can have recurring soft errors due to

faulty, but not dead, hardware

1

Examples

• DRAM errors

• Hard errors: Often caused by motherboard - faulty

traces, bad solder, etc.

• Soft errors: Often caused by cosmic radiation or alpha

particles (from the chip material itself) hitting memory

cell, changing value. (Remember that DRAM is just

little capacitors to store charge... if you hit it with

radiation, you can add charge to it.)

2

Some fun #s

• Both Microsoft and Google have recently

started to identify DRAM errors as an

increasing contributor to failures... Google in

their datacenters, Microsoft on your

desktops.

• We’ve known hard drives fail for years, of

course. :)

3

Replacement Rates

HPC1 COM1 COM2

Component % Component % Component %

Hard drive 30.6 Power supply 34.8 Hard drive 49.1

Memory 28.5 Memory 20.1 Motherboard 23.4

Misc/Unk 14.4 Hard drive 18.1 Power supply 10.1

CPU 12.4 Case 11.4 RAID card 4.1

motherboard 4.9 Fan 8 Memory 3.4

Controller 2.9 CPU 2 SCSI cable 2.2

QSW 1.7 SCSI Board 0.6 Fan 2.2

Power supply 1.6 NIC Card 1.2 CPU 2.2

MLB 1 LV Pwr Board 0.6 CD-ROM 0.6

SCSI BP 0.3 CPU heatsink 0.6 Raid Controller 0.6

4

Measuring Availability

• Mean time to failure (MTTF)

• Mean time to repair (MTTR)

• MTBF = MTTF + MTTR

• Availability = MTTF / (MTTF + MTTR)

• Suppose OS crashes once per month, takes 10min to

reboot.

• MTTF = 720 hours = 43,200 minutes

MTTR = 10 minutes

• Availability = 43200 / 43210 = 0.997 (~“3 nines”)

5

Availability

Availability %
Downtime

per year

Downtime per

month*

Downtime per

week

90% ("one nine") 36.5 days 72 hours 16.8 hours

95% 18.25 days 36 hours 8.4 hours

97% 10.96 days 21.6 hours 5.04 hours

98% 7.30 days 14.4 hours 3.36 hours

99% ("two nines") 3.65 days 7.20 hours 1.68 hours

99.50% 1.83 days 3.60 hours 50.4 minutes

99.80% 17.52 hours 86.23 minutes 20.16 minutes

99.9% ("three nines") 8.76 hours 43.8 minutes 10.1 minutes

99.95% 4.38 hours 21.56 minutes 5.04 minutes

99.99% ("four nines")
52.56

minutes
4.32 minutes 1.01 minutes

99.999% ("five nines") 5.26 minutes 25.9 seconds 6.05 seconds

99.9999% ("six nines") 31.5 seconds 2.59 seconds 0.605 seconds

99.99999% ("seven

nines")
3.15 seconds 0.259 seconds 0.0605 seconds

6

Availability in practice

• Carrier airlines (2002 FAA fact book)

• 41 accidents, 6.7M departures

• 99.9993% availability

• 911 Phone service (1993 NRIC report)

• 29 minutes per line per year

• 99.994%

• Standard phone service (various sources)

• 53+ minutes per line per year

• 99.99+%

• End-to-end Internet Availability

• 95% - 99.6%
7

Real Devices

8

Real Devices – the small print

9

Disk failure conditional probability
distribution - Bathtub curve

Expected operating lifetime

1 / (reported MTTF)

Infant
mortality

Burn
out

10

Other Bathtub Curves

From: L. Gavrilov & N. Gavrilova, “Why We Fall Apart,” IEEE Spectrum, Sep. 2004.

Data from http://www.mortality.org

Human

Mortality
Rates
(US, 1999)

11

So, back to disks...

• How can disks fail?

• Whole disk failure (power supply, electronics, motor,

etc.)

• Sector errors - soft or hard

• Read or write to the wrong place (e.g., disk is

bumped during operation)

• Can fail to read or write if head is too high, coating on

disk bad, etc.

• Disk head can hit the disk and scratch it.

12

Coping with failures...

• A failure

• Let’s say one bit in your DRAM fails.

• Propagates

• Assume it flips a bit in a memory address the kernel is

writing to. That causes a big memory error elsewhere,

or a kernel panic.

• Your program is running one of a dozen storage

servers for your distributed filesystem.

• A client can’t read from the DFS, so it hangs.

• A professor can’t check out a copy of your 15-440

assignment, so he gives you an F.

13

Recovery Techniques

• We’ve already seen some: e.g., retransmissions in

TCP and in your RPC system

• Modularity can help in failure isolation: preventing an

error in one component from spreading.

• Analogy: The firewall in your car keeps an engine fire from

affecting passengers

• Today: Redundancy and Retries

• Two lectures from now: Specific techniques used in file

systems, disks

• This time: Understand how to quantify reliability

• Understand basic techniques of replication and fault masking

14

What are our options?

1. Silently return the wrong answer.

2. Detect failure.

3. Correct / mask the failure

15

16

Parity Checking

Single Bit Parity:
Detect single bit errors

17

Block Error Detection

• EDC= Error Detection and Correction bits (redundancy)

• D = Data protected by error checking, may include header fields

• Error detection not 100% reliable!

• Protocol may miss some errors, but rarely

• Larger EDC field yields better detection and correction

18

Error Detection - Checksum

• Used by TCP, UDP, IP, etc..

• Ones complement sum of all words/shorts/bytes

in packet

• Simple to implement

• Relatively weak detection

• Easily tricked by typical loss patterns

19

Example: Internet Checksum

Sender
• Treat segment contents

as sequence of 16-bit
integers

• Checksum: addition (1’s
complement sum) of
segment contents

• Sender puts checksum
value into checksum field
in header

Receiver
• Compute checksum of

received segment

• Check if computed
checksum equals
checksum field value:

• NO - error detected

• YES - no error
detected. But maybe
errors nonethless?

• Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

20

Error Detection – Cyclic
Redundancy Check (CRC)

• Polynomial code

• Treat packet bits a coefficients of n-bit polynomial

• Choose r+1 bit generator polynomial (well known –

chosen in advance)

• Add r bits to packet such that message is divisible by

generator polynomial

• Better loss detection properties than checksums

• Cyclic codes have favorable properties in that they are

well suited for detecting burst errors

• Therefore, used on networks/hard drives

21

Error Detection – CRC

• View data bits, D, as a binary number

• Choose r+1 bit pattern (generator), G

• Goal: choose r CRC bits, R, such that

• <D,R> exactly divisible by G (modulo 2)

• Receiver knows G, divides <D,R> by G. If non-zero remainder:

error detected!

• Can detect all burst errors less than r+1 bits

• Widely used in practice

22

CRC Example

Want:

D.2r XOR R = nG

equivalently:

D.2r = nG XOR R

equivalently:

 if we divide D.2r by G,

want reminder Rb

R = remainder[]
D.2r

G

23

Error Recovery

• Two forms of error recovery
• Redundancy

• Error Correcting Codes (ECC)

• Replication/Voting

• Retry

• ECC
• Keep encoded redundant data to help repair losses

• Forward Error Correction (FEC) – send bits in advance

• Reduces latency of recovery at the cost of bandwidth

24

Error Recovery – Error
Correcting Codes (ECC)

Two Dimensional Bit Parity:
Detect and correct single bit errors

0 0

Replication/Voting

• If you take this to the extreme
 [r1] [r2] [r3]

• Send requests to all three versions of the software: Triple
modular redundancy
•Compare the answers, take the majority

•Assumes no error detection

• In practice - used mostly in space applications; some
extreme high availability apps (stocks & banking? maybe.
But usually there are cheaper alternatives if you don’t
need real-time)
•Stuff we cover later: surviving malicious failures through voting
(byzantine fault tolerance)

25

25

26

Retry – Network Example

Time

T
im

e
o

u
t

• Sometimes errors

are transient

• Need to have error

detection

mechanism

• E.g., timeout,

parity, chksum

• No need for

majority vote

Sender Receiver

One key question

• How correlated are failures?

• Can you assume independence?

• If the failure probability of a computer in a rack is p,

• What is p(computer 2 failing) | computer 1 failed?

• Maybe it’s p... or maybe they’re both plugged into

the same UPS...

• Why is this important?

27

Back to Disks…
What are our options?

1. Silently return the wrong answer.

2. Detect failure.
• Every sector has a header with a checksum. Every read

fetches both, computes the checksum on the data, and
compares it to the version in the header. Returns error if
mismatch.

3. Correct / mask the failure
• Re-read if the firmware signals error (may help if transient

error, may not)

• Use an error correcting code (what kinds of errors do they
help?)

• Bit flips? Yes. Block damaged? No

• Have the data stored in multiple places (RAID)

28

Fail-fast disk

failfast_get (data, sn) {

 get (s, sn);

 if (checksum(s.data) = s.cksum) {

 data ← s.data;

 return OK;

 } else {

 return BAD;

 }

}

29

Careful disk

careful_get (data, sn) {

 r ← 0;

 while (r < 10) {

 r ← failfast_get (data, sn);

 if (r = OK) return OK;

 r++;

 }

 return BAD;

}

30

Fault Tolerant Design

• Quantify probability of failure of each component

• Quantify the costs of the failure

• Quantify the costs of implementing fault tolerance

• This is all probabilities...

31

31

Summary

• Definition of MTTF/MTBF/MTTR: Understanding
availability in systems.

• Failure detection and fault masking techniques

• Engineering tradeoff: Cost of failures vs. cost of
failure masking.
• At what level of system to mask failures?

• Leading into replication as a general strategy for fault
tolerance

• Thought to leave you with:
• What if you have to survive the failure of entire

computers? Of a rack? Of a datacenter?

32

32

