Taguchi Methods

- Genichi Taguchi has been identified with the advent of what has come to be termed quality engineering.
- The goal of quality engineering is to move quality improvement efforts upstream from the production phase to the product/process design stage (off-line).
- As his loss function demonstrates, his main concern is deviation of a characteristic from its nominal value. Uncontrollable factors (noise) are often responsible for this deviation and, therefore, Taguchi's approach to experimental design has as its goal the design of products/process that are robust to these noise factors.

Taguchi's three stage design process

- System Design - create prototype product and process to produce it.
- Parameter Design - find settings of process and product parameters which minimize variability.
- Tolerance Design - tradeoff between loss to consumer and manufacturing costs

Signal to Noise Ratios

- In the parameter design stage Taguchi makes use of designed experiments and signal to noise ratios to determine the optimal parameter settings.
- The signal to noise ratios are derived from the Taguchi loss function.
- While Taguchi has proposed a large number of signal to noise ratios three are the most widely used:

Nominal is Best: $S N_{N}=10 \log \left(\frac{\bar{y}^{2}}{s^{2}}\right)$
Larger is Better: $S N_{\iota}=-10 \log \left(\frac{\sum_{i=1}^{n} 1 y_{i}^{2}}{n}\right)$
Smaller is Better: $\quad S N_{s}=-10 \log \left(\frac{\sum_{i=1}^{n} v_{i}^{2}}{n}\right)$

Experimental Design

- Taguchi has designed a number of orthogonal arrays to aid in the development of experiments
- These arrays are essentially balanced fractional factorial designs.
- He suggests using two array matrices for each designed experiment.
- The inner array is used to study the effects of the design parameters we wish to study.
- An outer array is used to model the noise factors that may impact the performance of the product in the field.

- Two of the Taguchi's simpler Orthogonal arrays

 are:$\mathrm{L}_{4}\left(2^{3}\right)$ and the $\mathrm{L}_{8}\left(2^{7}\right)$:
$\mathrm{L}_{4}\left(2^{3}\right)$

	Factors		
run	1	2	3
1	1	1	1
2	1	2	2
3	2	1	2
4	2	2	1

- The $\mathrm{L}_{8}\left(2^{7}\right)$ Orthogonal Array and its Linear Graphs

	Factors						
Run	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
$\mathbf{1}$	1	1	1	1	1	1	1
$\mathbf{2}$	1	1	1	2	2	2	2
$\mathbf{3}$	1	2	2	1	1	2	2
$\mathbf{4}$	1	2	2	2	2	1	1
$\mathbf{5}$	2	1	2	1	2	1	2
$\mathbf{6}$	2	1	2	2	1	2	1
$\mathbf{7}$	2	2	1	1	2	2	1
$\mathbf{8}$	2	2	1	2	1	1	2

Example

- In 1987 Taguchi published a paper in quality progress giving an example of his approach. The objective was to maximize the pull-off force of a connector to a nylon tube for an automotive application so SN_{L}. The factors studied and there levels are tabled below along with the results:

Design Factors										Levels				
A			Interference							Low		Medium	High	
B			Connector wall thickness							Thin		Medium	Thick	
C			Insertion depth							Shallow		Medium	Deep	
D			Percent adhesive							Low		Medium	High	
Noise Factors										Levels				
E			Conditioning Time							24h		120h		
F			Conditioning Temp							72°		150°		
G			Conditioning Humidity							25\%		75\%		
Outer Array (L_{8})				E F G	1 1 1	1 1 2	1 2 1	1 2 2	2 1 1	2 1 2	2 2 1	2 2 2		
Inner Array (L_{9})													Responses	
Run	A	B	C	D									Ave	SN_{1}
1	1	1	1	1	15.6	9.5	16.9	19.9	19.6	19.6	20.0	19.1	17.5	24.0
2	1	2	2	2	15.0	16.2	19.4	19.2	19.7	19.8	24.2	21.9	19.4	25.5
3	1	3	3	3	16.3	16.7	19.1	15.6	22.6	18.2	23.3	20.4	19.0	25.3
4	2	1	2	3	18.3	17.4	18.9	18.6	21.0	18.9	23.2	24.7	20.1	25.9
5	2	2	3	1	19.7	18.6	19.4	25.1	25.6	21.4	27.5	25.3	22.8	26.9
6	2	3	1	2	16.2	16.3	20.0	19.8	14.7	19.6	22.5	24.7	19.2	25.3
7	3	1	3	2	16.4	19.1	18.4	23.6	16.8	18.6	24.3	21.6	19.8	25.7
8	3	2	1	3	14.2	15.6	15.1	16.8	17.8	19.6	23.2	24.2	18.3	24.8
9	3	3	2	1	16.1	19.9	19.3	17.3	23.1	22.7	22.6	28.6	21.2	26.2

Taguchi used the L_{8} design to model the noise factors and the $\mathrm{L}_{9}\left(3^{4}\right)$ series of orthogonal arrays to model the design factors. The L_{9} design is as follows:

	Factors			
Run	$\boldsymbol{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\boldsymbol{1}$	1	1	1	1
$\mathbf{2}$	1	2	2	2
$\mathbf{3}$	1	3	3	3
$\mathbf{4}$	2	1	2	3
$\mathbf{5}$	2	2	3	1
$\mathbf{6}$	2	3	1	2
$\mathbf{7}$	3	1	3	2
$\mathbf{8}$	3	2	1	3
$\mathbf{9}$	3	3	2	1

