Taguchi Methods

- Genichi Taguchi has been identified with the advent of what has come to be termed quality engineering.
- The goal of quality engineering is to move quality improvement efforts upstream from the production phase to the product/process design stage (off-line).
- As his loss function demonstrates, his main concern is deviation of a characteristic from its nominal value. Uncontrollable factors (noise) are often responsible for this deviation and, therefore, Taguchi's approach to experimental design has as its goal the design of products/process that are robust to these noise factors.

Taguchi's three stage design process

- System Design create prototype product and process to produce it.
- Parameter Design find settings of process and product parameters which minimize variability.
- Tolerance Design tradeoff between loss to consumer and manufacturing costs

Signal to Noise Ratios

- In the parameter design stage Taguchi makes use of designed experiments and signal to noise ratios to determine the optimal parameter settings.
- The signal to noise ratios are derived from the Taguchi loss function.
- While Taguchi has proposed a large number of signal to noise ratios three are the most widely used:

Nominal is Best: $SN_N = 10\log\left(\frac{y}{s^2}\right)$

Larger is Better:
$$SN_{L} = -10\log\left(\frac{\sum_{i=1}^{n} \frac{1}{y_{i}^{2}}}{n}\right)$$

Smaller is Better:
$$SN_s = -10\log\left(\frac{\sum_{i=1}^n y_i^2}{n}\right)$$

Experimental Design

- Taguchi has designed a number of orthogonal arrays to aid in the development of experiments
- These arrays are essentially balanced fractional factorial designs.
- He suggests using two array matrices for each designed experiment.
- The inner array is used to study the effects of the design parameters we wish to study.
- An outer array is used to model the noise factors that may impact the performance of the product in the field.

- Two of the Taguchi's simpler Orthogonal arrays are:
- $L_4(2^3)$ and the $L_8(2^7)$:

 $L_4(2^3)$

	Factors							
run	1	2	3					
1	1	1	1					
2	1	2	2					
3	2	1	2					
4	2	2	1					

• The $L_8(2^7)$ Orthogonal Array and its Linear Graphs

	Factors								
Run	1	2	3	4	5	6	7		
1	1	1	1	1	1	1	1		
2	1	1	1	2	2	2	2		
3	1	2	2	1	1	2	2		
4	1	2	2	2	2	1	1		
5	2	1	2	1	2	1	2		
6	2	1	2	2	1	2	1		
7	2	2	1	1	2	2	1		
8	2	2	1	2	1	1	2		

Example

• In 1987 Taguchi published a paper in *quality progress* giving an example of his approach. The objective was to maximize the pull-off force of a connector to a nylon tube for an automotive application so SN_L . The factors studied and there levels are tabled below along with the results:

			D	esign F	actors								Ι	Levels		
Α			Interf	erence							Low		Ν	1edium	E	ligh
В			Conn	ector wa	all thick	iness					Thin		Ν	1edium	T	hick
С			Insert	ion dep	th					Sl	hallov	V	Ν	1edium	D	Deep
D			Perce	nt adhes	sive						Low		Ν	/ledium	E	ligh
Noise	Factor	•s	•							Le	vels					
Ε				itioning						241	h		12	0h		
F			Cond	itioning	Temp					729	0		15	0°		
G			Cond	itioning	Humid	ity				259	%		75	%		
Outer	Array	(L_8)		Е	1	1	1	1	2		2	2		2		
		(0)		F	1	1	2	2	1		1	2		2		
				G	1	2	1	2	1		2	1		2		
	Inne	r Array	(L_9)												Respo	nses
Run	А	В	С	D											Ave	SN ₁
1	1	1	1	1	15.6	9.5	16.9	19.9	19.	6	19.6	20	0.0	19.1	17.5	24.0
2	1	2	2	2	15.0	16.2	19.4	19.2	19.	7	19.8	24	.2	21.9	19.4	25.5
3	1	3	3	3	16.3	16.7	19.1	15.6	22.	6	18.2	23	.3	20.4	19.0	25.3
4	2	1	2	3	18.3	17.4	18.9	18.6	21.	0	18.9	23	.2	24.7	20.1	25.9
5	2	2	3	1	19.7	18.6	19.4	25.1	25.	6 2	21.4	27	.5	25.3	22.8	26.9
6	2	3	1	2	16.2	16.3	20.0	19.8	14.	7	19.6	22	.5	24.7	19.2	25.3
7	3	1	3	2	16.4	19.1	18.4	23.6	16.	8	18.6	24	.3	21.6	19.8	25.7
8	3	2	1	3	14.2	15.6	15.1	16.8	17.	8	19.6	23	.2	24.2	18.3	24.8
9	3	3	2	1	16.1	19.9	19.3	17.3	23.	1 2	22.7	22	.6	28.6	21.2	26.2

Taguchi used the L_8 design to model the noise factors and the $L_9(3^4)$ series of orthogonal arrays to model the design factors. The L_9 design is as follows:

	Factors								
Run	1	2	3	4					
1	1	1	1	1					
2	1	2	2	2					
3	1	3	3	3					
4	2	1	2	3					
5	2	2	3	1					
6	2	3	1	2					
7	3	1	3	2					
8	3	2	1	3					
9	3	3	2	1					

1 **O** 2