- It is physically impossible for any data recording or transmission medium to be 100% perfect 100% of the time over its entire expected useful life.
- As more bits are packed onto a square centimeter of disk storage, as communications transmission speeds increase, the likelihood of error increases-sometimes geometrically.
- Thus, error detection and correction is critical to accurate data transmission, storage and retrieval.
- Check digits, appended to the end of a long number can provide some protection against data input errors.
- The last character of UPC barcodes and ISBNs are check digits.
- Longer data streams require more economical and sophisticated error detection mechanisms.
- Cyclic redundancy checking (CRC) codes provide error detection for large blocks of data.

2.8 Error Detection and Correction

- Checksums and CRCs are examples of systematic error detection.
- In systematic error detection a group of error control bits is appended to the end of the block of transmitted data.
- This group of bits is called a syndrome.
- CRCs are polynomials over the modulo 2 arithmetic field.

The mathematical theory behind modulo 2 polynomials is beyond our scope. However, we can easily work with it without knowing its theoretical underpinnings.

2.8 Error Detection and Correction

- Modulo 2 arithmetic works like clock arithmetic.
- In clock arithmetic, if we add 2 hours to 11:00, we get 1:00.
- In modulo 2 arithmetic if we add 1 to 1 , we get 0 . The addition rules couldn't be simpler:

$$
\begin{array}{ll}
0+0=0 & 0+1=1 \\
1+0=1 & 1+1=0
\end{array}
$$

You will fully understand why modulo 2 arithmetic is so handy after you study digital circuits in Chapter 3.

2.8 Error Detection and Correction

- Find the quotient and remainder when 1111101 is divided by 1101 in modulo 2 arithmetic.
- As with traditional division, we note that the dividend is divisible once by the divisor.
- We place the divisor under the dividend and perform modulo 2 subtraction.

$$
\begin{gathered}
1 \\
\frac{1}{1111101} \\
\frac{1101}{0010}
\end{gathered}
$$

2.8 Error Detection and Correction

- Find the quotient and remainder when 1111101 is divided by 1101 in modulo 2 arithmetic...
- Now we bring down the next bit of the dividend.
- We see that 00101 is not divisible by 1101. So we place a zero in the quotient.

$$
\begin{gathered}
1 1 0 1 \longdiv { 1 1 1 1 1 0 1 } \\
\frac{1101}{00101}
\end{gathered}
$$

2.8 Error Detection and Correction

- Find the quotient and remainder when 1111101 is divided by 1101 in modulo 2 arithmetic...
- 1010 is divisible by 1101 in modulo 2.
- We perform the modulo 2 subtraction.

$$
\begin{array}{r}
1 1 0 1 \longdiv { 1 1 1 1 1 0 1 } \\
\frac{1101}{001010} \\
\frac{1101}{0111}
\end{array}
$$

2.8 Error Detection and Correction

- Find the quotient and remainder when 1111101 is divided by 1101 in modulo 2 arithmetic...
- We find the quotient is 1011, and the remainder is 0010 .
- This procedure is very useful to us in calculating CRC syndromes.

$$
\begin{array}{r}
1 1 0 1 \longdiv { 1 1 1 1 1 1 } \\
\frac{1101}{001010} \\
\frac{1101}{01111} \\
\frac{1101}{0010}
\end{array}
$$

Note: The divisor in this example corresponds to a modulo 2 polynomial: $X^{3}+X^{2}+1$.

- Suppose we want to transmit the information string: 1111101.
- The receiver and sender decide to use the (arbitrary) polynomial pattern, 1101.
- The information string is shifted left by one position less than the number of positions in the divisor.
- The remainder is found through modulo 2 division (at right) and added to the information string: 1111101000 + 111 = 1111101111 .

$$
\begin{array}{r}
1 1 0 1 \longdiv { 1 1 1 1 1 0 1 0 1 1 } \\
\frac{1101}{001010} \\
\frac{1101}{01111} \\
\frac{1101}{001000} \\
\frac{1101}{01010} \\
\frac{1101}{0111}
\end{array}
$$

- If no bits are lost or corrupted, dividing the received information string by the agreed upon pattern will give a remainder of zero.
- We see this is so in the calculation at the right.
- Real applications use longer polynomials to cover larger information strings.
- Some of the standard polynomials are listed in the text.

$$
\begin{array}{r}
1 1 0 1 \longdiv { 1 1 1 1 1 0 1 1 1 1 } \\
\frac{1101}{001010} \\
\frac{1101}{01111} \\
\frac{1101}{001011} \\
\frac{1101}{01101} \\
\frac{1101}{0000}
\end{array}
$$

- Data transmission errors are easy to fix once an error is detected.
- Just ask the sender to transmit the data again.
- In computer memory and data storage, however, this cannot be done.
- Too often the only copy of something important is in memory or on disk.
- Thus, to provide data integrity over the long term, error correcting codes are required.
- Hamming codes and Reed-Soloman codes are two important error correcting codes.
- Reed-Soloman codes are particularly useful in correcting burst errors that occur when a series of adjacent bits are damaged.
- Because CD-ROMs are easily scratched, they employ a type of Reed-Soloman error correction.
- Because the mathematics of Hamming codes is much simpler than Reed-Soloman, we discuss Hamming codes in detail.
- Hamming codes are code words formed by adding redundant check bits, or parity bits, to a data word.
- The Hamming distance between two code words is the number of bits in which two code words differ.

| This pair of bytes has a | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Hamming distance of 3: | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |

- The minimum Hamming distance for a code is the smallest Hamming distance between all pairs of words in the code.
- The minimum Hamming distance for a code, $\mathrm{D}(\mathrm{min})$, determines its error detecting and error correcting capability.
- For any code word, X, to be interpreted as a different valid code word, Y, at least D (min) single-bit errors must occur in X.
- Thus, to detect k (or fewer) single-bit errors, the code must have a Hamming distance of $\mathrm{D}(\min)=k+1$.
- Hamming codes can detect $\mathrm{D}(\mathrm{min})$ - 1 errors and correct $\left\lfloor\frac{D(\text { Min })-1}{2}\right\rfloor$ errors
- Thus, a Hamming distance of $2 k+1$ is required to be able to correct k errors in any data word.
- Hamming distance is provided by adding a suitable number of parity bits to a data word.
- Suppose we have a set of n-bit code words consisting of m data bits and r (redundant) parity bits.
- An error could occur in any of the n bits, so each code word can be associated with n erroneous words at a Hamming distance of 1.
- Therefore, we have $n+1$ bit patterns for each code word: one valid code word, and n erroneous words.
- With n-bit code words, we have 2^{n} possible code words consisting of 2^{m} data bits (where $\mathrm{n}=\mathrm{m}+r$).
- This gives us the inequality:

$$
(n+1) \times 2^{m} \leq 2^{n}
$$

- Because $\mathrm{n}=\mathrm{m}+r$, we can rewrite the inequality as:

$$
(m+r+1) \times 2^{m} \leq 2^{m+r} \text { or }(m+r+1) \leq 2^{r}
$$

- This inequality gives us a lower limit on the number of check bits that we need in our code words.
- Suppose we have data words of length $m=4$. Then:

$$
(4+r+1) \leq 2^{r}
$$

implies that r must be greater than or equal to 3 .

- This means to build a code with 4-bit data words that will correct single-bit errors, we must add 3 check bits.
- Finding the number of check bits is the hard part. The rest is easy.
- Suppose we have data words of length $m=8$. Then:

$$
(8+r+1) \leq 2^{r}
$$

implies that r must be greater than or equal to 4.

- This means to build a code with 8-bit data words that will correct single-bit errors, we must add 4 check bits, creating code words of length 12.
- So how do we assign values to these check bits?
- With code words of length 12 , we observe that each of the digits, 1 though 12, can be expressed in powers of 2. Thus:

$$
\begin{array}{llr}
1=2^{0} & 5=2^{2}+2^{0} & 9=2^{3}+2^{0} \\
2=2^{1} & 6=2^{2}+2^{1} & 10=2^{3}+2^{1} \\
3=2^{1}+2^{0} & 7=2^{2}+2^{1}+2^{0} & 11=2^{3}+2^{1}+2^{0} \\
4=2^{2} & 8=2^{3} & 12=2^{3}+2^{2}
\end{array}
$$

$-1\left(=2^{0}\right)$ contributes to all of the odd-numbered digits.
$-2\left(=2^{1}\right)$ contributes to the digits, $2,3,6,7,10$, and 11 .

- . . . And so forth . . .
- We can use this idea in the creation of our check bits.
- Using our code words of length 12, number each bit position starting with 1 in the low-order bit.
- Each bit position corresponding to an even power of 2 will be occupied by a check bit.
- These check bits contain the parity of each bit position for which it participates in the sum.
$\begin{array}{lllllllllllll}\overline{12} & \overline{11} & \overline{10} & \overline{9} & 8 & \overline{7} & \overline{6} & \overline{5} & 4 & \overline{3} & 2 & 1\end{array}$
- Since $2\left(=2^{1}\right)$ contributes to the digits, $2,3,6,7,10$, and 11. Position 2 will contain the parity for bits 3 , $6,7,10$, and 11.
- When we use even parity, this is the modulo 2 sum of the participating bit values.
- For the bit values shown, we have a parity value of 0 in the second bit position.

1	1	0	1		0	1	1		0	0	
12	11	10	9	8	7	6	5	4	3	2	1

What are the values for the other parity bits?

2.8 Error Detection and Correction

1	1	0	1	1	0	1	1	1	0	0	1
12	11	10	9	8	7	6	5	4	3	2	1

- The completed code word is shown above.
- Bit 1 checks the digits, $3,5,7,9$, and 11 , so its value is 1.
- Bit 4 checks the digits, $5,6,7$, and 12 , so its value is 1 .
- Bit 8 checks the digits, $9,10,11$, and 12 , so its value is also 1.
- Using the Hamming algorithm, we can not only detect single bit errors in this code word, but also correct them!

2.8 Error Detection and Correction

1	1	0	1	1	0	1	0	1	0	0	1
12	11	10	9	8	7	6	5	4	3	2	1

- Suppose an error occurs in bit 5, as shown above.

Our parity bit values are:

- Bit 1 checks digits, 3, 5, 7, 9, and 11. Its value is 1 , but should be zero.
- Bit 2 checks digits $2,3,6,7,10$, and 11 . The zero is correct.
- Bit 4 checks digits, 5, 6, 7, and 12. Its value is 1, but should be zero.
- Bit 8 checks digits, $9,10,11$, and 12 . This bit is correct.

1	1	0	1	1	0	1	0	1	0	0	1
12	11	10	9	8	7	6	5	4	3	2	1

- We have erroneous bits in positions 1 and 4.
- With two parity bits that don't check, we know that the error is in the data, and not in a parity bit.
- Which data bits are in error? We find out by adding the bit positions of the erroneous bits.
- Simply, $1+4=5$. This tells us that the error is in bit 5 . If we change bit 5 to a 1 , all parity bits check and our data is restored.

