
• It is physically impossible for any data recording or

transmission medium to be 100% perfect 100% of the

time over its entire expected useful life.

• As more bits are packed onto a square centimeter of

disk storage, as communications transmission

speeds increase, the likelihood of error increases--

sometimes geometrically.

• Thus, error detection and correction is critical to

accurate data transmission, storage and retrieval.

2.8 Error Detection and Correction

• Check digits, appended to the end of a long number

can provide some protection against data input

errors.

– The last character of UPC barcodes and ISBNs are check

digits.

• Longer data streams require more economical and

sophisticated error detection mechanisms.

• Cyclic redundancy checking (CRC) codes provide

error detection for large blocks of data.

2.8 Error Detection and Correction

• Checksums and CRCs are examples of systematic

error detection.

• In systematic error detection a group of error control

bits is appended to the end of the block of

transmitted data.

– This group of bits is called a syndrome.

• CRCs are polynomials over the modulo 2 arithmetic

field.

2.8 Error Detection and Correction

 The mathematical theory behind modulo 2 polynomials

is beyond our scope. However, we can easily work with

it without knowing its theoretical underpinnings.

• Modulo 2 arithmetic works like clock arithmetic.

• In clock arithmetic, if we add 2 hours to 11:00, we

get 1:00.

• In modulo 2 arithmetic if we add 1 to 1, we get 0.

The addition rules couldn’t be simpler:

2.8 Error Detection and Correction

 You will fully understand why modulo 2 arithmetic is so

handy after you study digital circuits in Chapter 3.

0 + 0 = 0 0 + 1 = 1

1 + 0 = 1 1 + 1 = 0

• Find the quotient and

remainder when 1111101 is

divided by 1101 in modulo 2

arithmetic.

– As with traditional division,

we note that the dividend is

divisible once by the divisor.

– We place the divisor under the

dividend and perform modulo

2 subtraction.

2.8 Error Detection and Correction

• Find the quotient and

remainder when 1111101 is

divided by 1101 in modulo 2

arithmetic…

– Now we bring down the next

bit of the dividend.

– We see that 00101 is not

divisible by 1101. So we place

a zero in the quotient.

2.8 Error Detection and Correction

• Find the quotient and

remainder when 1111101 is

divided by 1101 in modulo 2

arithmetic…

– 1010 is divisible by 1101 in

modulo 2.

– We perform the modulo 2

subtraction.

2.8 Error Detection and Correction

• Find the quotient and

remainder when 1111101 is

divided by 1101 in modulo 2

arithmetic…

– We find the quotient is 1011,

and the remainder is 0010.

• This procedure is very useful

to us in calculating CRC

syndromes.

2.8 Error Detection and Correction

 Note: The divisor in this example corresponds

to a modulo 2 polynomial: X 3 + X 2 + 1.

• Suppose we want to transmit the

information string: 1111101.

• The receiver and sender decide to

use the (arbitrary) polynomial

pattern, 1101.

• The information string is shifted

left by one position less than the

number of positions in the divisor.

• The remainder is found through

modulo 2 division (at right) and

added to the information string:

1111101000 + 111 = 1111101111.

2.8 Error Detection and Correction

• If no bits are lost or corrupted,

dividing the received

information string by the

agreed upon pattern will give a

remainder of zero.

• We see this is so in the

calculation at the right.

• Real applications use longer

polynomials to cover larger

information strings.

– Some of the standard poly-

nomials are listed in the text.

2.8 Error Detection and Correction

• Data transmission errors are easy to fix once an error

is detected.

– Just ask the sender to transmit the data again.

• In computer memory and data storage, however, this

cannot be done.

– Too often the only copy of something important is in

memory or on disk.

• Thus, to provide data integrity over the long term,

error correcting codes are required.

2.8 Error Detection and Correction

• Hamming codes and Reed-Soloman codes are two

important error correcting codes.

• Reed-Soloman codes are particularly useful in

correcting burst errors that occur when a series of

adjacent bits are damaged.

– Because CD-ROMs are easily scratched, they employ a type

of Reed-Soloman error correction.

• Because the mathematics of Hamming codes is

much simpler than Reed-Soloman, we discuss

Hamming codes in detail.

2.8 Error Detection and Correction

• Hamming codes are code words formed by adding

redundant check bits, or parity bits, to a data word.

• The Hamming distance between two code words is

the number of bits in which two code words differ.

• The minimum Hamming distance for a code is the

smallest Hamming distance between all pairs of

words in the code.

2.8 Error Detection and Correction

This pair of bytes has a

Hamming distance of 3:

• The minimum Hamming distance for a code,

D(min), determines its error detecting and error

correcting capability.

• For any code word, X, to be interpreted as a

different valid code word, Y, at least D(min)

single-bit errors must occur in X.

• Thus, to detect k (or fewer) single-bit errors, the

code must have a Hamming distance of

D(min) = k + 1.

2.8 Error Detection and Correction

• Hamming codes can detect D(min) - 1 errors

and correct errors

• Thus, a Hamming distance of 2k + 1 is

required to be able to correct k errors in any

data word.

• Hamming distance is provided by adding a

suitable number of parity bits to a data word.

2.8 Error Detection and Correction

• Suppose we have a set of n-bit code words

consisting of m data bits and r (redundant) parity

bits.

• An error could occur in any of the n bits, so each

code word can be associated with n erroneous

words at a Hamming distance of 1.

• Therefore,we have n + 1 bit patterns for each

code word: one valid code word, and n erroneous

words.

2.8 Error Detection and Correction

• With n-bit code words, we have 2 n possible code

words consisting of 2 m data bits (where n = m + r).

• This gives us the inequality:

 (n + 1) 2 m 2 n

• Because n = m + r, we can rewrite the inequality

as:

 (m + r + 1) 2 m 2 m + r or (m + r + 1) 2 r

– This inequality gives us a lower limit on the number of

check bits that we need in our code words.

2.8 Error Detection and Correction

• Suppose we have data words of length m = 4.

Then:

 (4 + r + 1) 2 r

 implies that r must be greater than or equal to 3.

• This means to build a code with 4-bit data words

that will correct single-bit errors, we must add 3

check bits.

• Finding the number of check bits is the hard part.

The rest is easy.

2.8 Error Detection and Correction

• Suppose we have data words of length m = 8.

Then:

 (8 + r + 1) 2 r

 implies that r must be greater than or equal to 4.

• This means to build a code with 8-bit data words

that will correct single-bit errors, we must add 4

check bits, creating code words of length 12.

• So how do we assign values to these check

bits?

2.8 Error Detection and Correction

• With code words of length 12, we observe that each

of the digits, 1 though 12, can be expressed in

powers of 2. Thus:

 1 = 2 0 5 = 2 2 + 2 0 9 = 2 3 + 2 0

 2 = 2 1 6 = 2 2 + 2 1 10 = 2 3 + 2 1
 3 = 2 1 + 2 0 7 = 2 2 + 2 1 + 2 0 11 = 2 3 + 2 1 + 2 0

 4 = 2 2 8 = 2 3 12 = 2 3 + 2 2

– 1 (= 20) contributes to all of the odd-numbered digits.

– 2 (= 21) contributes to the digits, 2, 3, 6, 7, 10, and 11.

– . . . And so forth . . .

• We can use this idea in the creation of our check bits.

2.8 Error Detection and Correction

• Using our code words of length 12, number each

bit position starting with 1 in the low-order bit.

• Each bit position corresponding to an even

power of 2 will be occupied by a check bit.

• These check bits contain the parity of each bit

position for which it participates in the sum.

2.8 Error Detection and Correction

• Since 2 (= 21) contributes to the digits, 2, 3, 6, 7, 10,

and 11. Position 2 will contain the parity for bits 3,

6, 7, 10, and 11.

• When we use even parity, this is the modulo 2 sum

of the participating bit values.

• For the bit values shown, we have a parity value of

0 in the second bit position.

2.8 Error Detection and Correction

 What are the values for the other parity bits?

• The completed code word is shown above.
– Bit 1checks the digits, 3, 5, 7, 9, and 11, so its value is

1.

– Bit 4 checks the digits, 5, 6, 7, and 12, so its value is 1.

– Bit 8 checks the digits, 9, 10, 11, and 12, so its value is

also 1.

• Using the Hamming algorithm, we can not only

detect single bit errors in this code word, but also

correct them!

2.8 Error Detection and Correction

• Suppose an error occurs in bit 5, as shown above.

Our parity bit values are:
– Bit 1 checks digits, 3, 5, 7, 9, and 11. Its value is 1, but

should be zero.

– Bit 2 checks digits 2, 3, 6, 7, 10, and 11. The zero is

correct.

– Bit 4 checks digits, 5, 6, 7, and 12. Its value is 1, but

should be zero.

– Bit 8 checks digits, 9, 10, 11, and 12. This bit is correct.

2.8 Error Detection and Correction

• We have erroneous bits in positions 1 and 4.

• With two parity bits that don’t check, we know that

the error is in the data, and not in a parity bit.

• Which data bits are in error? We find out by

adding the bit positions of the erroneous bits.

• Simply, 1 + 4 = 5. This tells us that the error is in

bit 5. If we change bit 5 to a 1, all parity bits check

and our data is restored.

2.8 Error Detection and Correction

