
• It is physically impossible for any data recording or 

transmission medium to be 100% perfect 100% of the 

time over its entire expected useful life. 

• As more bits are packed onto a square centimeter of 

disk storage, as communications transmission 

speeds increase, the likelihood of error increases-- 

sometimes geometrically. 

• Thus, error detection and correction is critical to 

accurate data transmission, storage and retrieval. 
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• Check digits, appended to the end of a long number 

can provide some protection against data input 

errors. 

– The last character of UPC barcodes and ISBNs are check 

digits. 

• Longer data streams require more economical and 

sophisticated error detection mechanisms. 

• Cyclic redundancy checking (CRC) codes provide 

error detection for large blocks of data. 
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• Checksums and CRCs are examples of systematic 

error detection. 

• In systematic error detection a group of error control 

bits is appended to the end of the block of 

transmitted data. 

– This group of bits is called a syndrome. 

• CRCs are polynomials over the modulo 2 arithmetic 

field. 
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    The mathematical theory behind modulo 2 polynomials 

is beyond our scope. However, we can easily work with 

it without knowing its theoretical underpinnings. 



• Modulo 2 arithmetic works like clock arithmetic. 

• In clock arithmetic, if we add 2 hours to 11:00, we 

get 1:00. 

• In modulo 2 arithmetic if we add 1 to 1, we get 0. 

The addition rules couldn’t be simpler: 
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    You will fully understand why modulo 2 arithmetic is so 

handy after you study digital circuits in Chapter 3. 

0 + 0 = 0 0 + 1 = 1 

1 + 0 = 1 1 + 1 = 0 



• Find the quotient and 

remainder when 1111101 is 

divided by 1101 in modulo 2 

arithmetic. 

– As with traditional division, 

we note that the dividend is 

divisible once by the divisor. 

– We place the divisor under the 

dividend and perform modulo 

2 subtraction. 
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• Find the quotient and 

remainder when 1111101 is 

divided by 1101 in modulo 2 

arithmetic… 

– Now we bring down the next 

bit of the dividend. 

– We see that 00101 is not 

divisible by 1101. So we place 

a zero in the quotient. 
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• Find the quotient and 

remainder when 1111101 is 

divided by 1101 in modulo 2 

arithmetic… 

– 1010 is divisible by 1101 in 

modulo 2. 

– We perform the modulo 2 

subtraction. 
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• Find the quotient and 

remainder when 1111101 is 

divided by 1101 in modulo 2 

arithmetic… 

– We find the quotient is 1011, 

and the remainder is 0010. 

• This procedure is very useful 

to us in calculating CRC 

syndromes. 
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   Note: The divisor in this example corresponds 

to a modulo 2 polynomial:   X 3 + X 2 + 1. 



• Suppose we want to transmit the 

information string: 1111101. 

• The receiver and sender decide to 

use the (arbitrary) polynomial 

pattern, 1101. 

• The information string is shifted 

left by one position less than the 

number of positions in the divisor. 

• The remainder is found through 

modulo 2 division (at right) and 

added to the information string: 

1111101000 + 111 = 1111101111. 
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• If no bits are lost or corrupted, 

dividing the received 

information string by the 

agreed upon pattern will give a 

remainder of zero. 

• We see this is so in the 

calculation at the right. 

• Real applications use longer 

polynomials to cover larger 

information strings.   

– Some of the standard poly-

nomials are listed in the text. 
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• Data transmission errors are easy to fix once an error 

is detected.  

– Just ask the sender to transmit the data again. 

• In computer memory and data storage, however, this 

cannot be done. 

– Too often the only copy of something important is in 

memory or on disk. 

• Thus, to provide data integrity over the long term, 

error correcting codes are required. 
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• Hamming codes and Reed-Soloman codes are two 

important error correcting codes.  

• Reed-Soloman codes are particularly useful in 

correcting burst errors that occur when a series of 

adjacent bits are damaged. 

– Because CD-ROMs are easily scratched, they employ a type 

of Reed-Soloman error correction. 

• Because the mathematics of Hamming codes is 

much simpler than Reed-Soloman, we discuss 

Hamming codes in detail. 
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• Hamming codes are code words formed by adding 

redundant check bits, or parity bits, to a data word. 

• The Hamming distance between two code words is 

the number of bits in which two code words differ. 

 

 

• The minimum Hamming distance for a code is the 

smallest Hamming distance between all pairs of 

words in the code.  
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This pair of bytes has a 

Hamming distance of 3: 



• The minimum Hamming distance for a code, 

D(min), determines its error detecting and error 

correcting capability.  

• For any code word, X, to be interpreted as a 

different valid code word, Y, at least D(min) 

single-bit errors must occur in X. 

• Thus, to detect k (or fewer) single-bit errors, the 

code must have a Hamming distance of        

D(min) = k + 1. 
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• Hamming codes can detect  D(min) - 1 errors 

and correct       errors 

• Thus, a Hamming distance of 2k + 1 is 

required to be able to correct k errors in any 

data word. 

• Hamming distance is provided by adding a 

suitable number of parity bits to a data word. 
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• Suppose we have a set of n-bit code words 

consisting of m data bits and r (redundant) parity 

bits.  

• An error could occur in any of the n bits, so each 

code word can be associated with n erroneous 

words at a Hamming distance of 1. 

• Therefore,we have n + 1 bit patterns for each 

code word: one valid code word, and n erroneous 

words. 
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• With n-bit code words, we have 2 n possible code 

words consisting of 2 m data bits (where n = m + r). 

• This gives us the inequality:  

   (n + 1)  2 m   2 n  

• Because n = m + r, we can rewrite the inequality 

as: 

   (m + r + 1)  2 m   2 m + r  or   (m + r + 1)   2 r  

– This inequality gives us a lower limit on the number of 

check bits that we need in our code words. 
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• Suppose we have data words of length m = 4.  

Then: 

       (4 + r + 1)   2 r  

 implies that r must be greater than or equal to 3. 

• This means to build a code with 4-bit data words 

that will correct single-bit errors, we must add 3 

check bits. 

• Finding the number of check bits is the hard part.  

The rest is easy. 
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• Suppose we have data words of length m = 8.  

Then: 

       (8 + r + 1)   2 r  

 implies that r must be greater than or equal to 4. 

• This means to build a code with 8-bit data words 

that will correct single-bit errors, we must add 4 

check bits, creating code words of length 12. 

• So how do we assign values to these check 

bits? 
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• With code words of length 12, we observe that each 

of the digits, 1 though 12, can be expressed in 

powers of 2.  Thus: 

   1 = 2 0 5 = 2 2 + 2 0    9 = 2 3 + 2 0 

   2 = 2 1 6 = 2 2 + 2 1 10 = 2 3 + 2 1 
   3 = 2 1 + 2 0 7 = 2 2 + 2 1 + 2 0 11 = 2 3 + 2 1 + 2 0 

    4 = 2 2 8 = 2 3 12 = 2 3 + 2 2 

– 1 (= 20) contributes to all of the odd-numbered digits. 

– 2 (= 21) contributes to the digits, 2, 3, 6, 7, 10, and 11. 

– . . . And so forth . . . 

• We can use this idea in the creation of our check bits. 
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• Using our code words of length 12, number each 

bit position starting with 1 in the low-order bit. 

• Each bit position corresponding to an even 

power of 2 will be occupied by a check bit. 

• These check bits contain the parity of each bit 

position for which it participates in the sum. 
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• Since 2 (= 21) contributes to the digits, 2, 3, 6, 7, 10, 

and 11.  Position 2 will contain the parity for bits 3, 

6, 7, 10, and 11. 

• When we use even parity, this is the modulo 2 sum 

of the participating bit values. 

• For the bit values shown, we have a parity value of 

0 in the second bit position. 
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  What are the values for the other parity bits? 



• The completed code word is shown above. 
– Bit 1checks the digits, 3, 5, 7, 9, and 11, so its value is 

1. 

– Bit 4 checks the digits, 5, 6, 7, and 12, so its value is 1. 

– Bit 8 checks the digits, 9, 10, 11, and 12, so its value is 

also 1. 

• Using the Hamming algorithm, we can not only 

detect single bit errors in this code word, but also 

correct them! 
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• Suppose an error occurs in bit 5, as shown above.  

Our parity bit values are: 
– Bit 1 checks digits, 3, 5, 7, 9, and 11. Its value is 1, but 

should be zero. 

– Bit 2 checks digits 2, 3, 6, 7, 10, and 11. The zero is 

correct.  

– Bit 4 checks digits, 5, 6, 7, and 12. Its value is 1, but 

should be zero. 

– Bit 8 checks digits, 9, 10, 11, and 12. This bit is correct. 
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• We have erroneous bits in positions 1 and 4. 

• With two parity bits that don’t check, we know that 

the error is in the data, and not in a parity bit. 

• Which data bits are in error?  We find out by 

adding the bit positions of the erroneous bits. 

• Simply, 1 + 4 = 5.  This tells us that the error is in 

bit 5. If we change bit 5 to a 1, all parity bits check 

and our data is restored. 
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