Outline

Power system analysis and control

- Power system analysis
 - Power flow
 - Optimal power flow
- Power flow control
 - Primary control
 - Secondary control
 - Tertiary control
 - Voltage control

Control of active and reactive power Voltage regulation

• Voltage between sender and receiver $\underline{S}_{R} = \underline{U}_{R} \cdot \underline{I}_{R} = P_{R} + j \cdot Q_{R}$

• Voltage related to reactive power:

- Normal conditions ==> steady state (equilibrium)
- Basis calculations to obtain this state are called Power Flow
 - Also called Load Flow
- Purpose of power flow:
 - Determine steady state situation of the grid
 - Get values for P, Q, U and voltage angle
 - Calculate system losses
 - First step for
 - N-1 contingency study
 - Congestion analysis
 - Need for redispatch
 - System development
 - Stability studies

• ...

N-1

- Each line has capacity of 900 MW
- Equal, lossless lines between nodes

Congestion and redispatch

- Each ine has eapacity of 900 MW Equal, lossless lines between nodes
- The right generator is cheaper than the left, both have capacity 1500 MW

Three types of nodes Voltage controlled nodes (P-U node)

- Nodes connected to a generator
- Voltage is controlled at a fixed value
- Active power delivered at a known value
- Unregulated voltage node (P-Q node)
 - A certain P and Q is demanded or delivered (non dispatched power plants, e.g. CHP)
 - In practice: mostly nodes representing a pure `load'
- Slack or swing bus (U- δ node)
 - Variable P and Q
 - Node that takes up mismatches

Assumptions and representation

- Properties are not influenced by small changes in voltage or frequency
- Linear, localized parameters
- Balanced system
- ==> Single line representation
- Loads represented by their P and Q values
- Current and power flowing to the node is positive
- Transmission lines and transformers: $\pi \rho^{D}$ equivalent

Power Flow

- I=Y.Visalset of (complex) linear equations
- But P and Q are needed ==> S=V.I*
 - Set of non-linear equations

$$\Delta P_{k} = P_{Gk} - P_{Lk} - \left\{ -V_{k}^{2}G_{kk} + V_{k}V_{m} \left[G_{km}\cos(\theta_{k} - \theta_{m}) + B_{km}\sin(\theta_{k} - \theta_{m}) \right] \right\} = 0$$

$$\Delta Q_{k} = Q_{Gk} - Q_{Lk} - \left\{ -V_{k}^{2}B_{kk} + V_{k}V_{m} \left[G_{km}\sin(\theta_{k} - \theta_{m}) - B_{km}\cos(\theta_{k} - \theta_{m}) \right] \right\} = 0$$

$$\begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix}^{(i)} = -\begin{bmatrix} \frac{\partial P}{\partial \theta} & \frac{\partial P}{\partial V} \\ \frac{\partial Q}{\partial \theta} & \frac{\partial Q}{\partial V} \\ \frac{\partial Q}{\partial U} & \frac{\partial Q}{\partial U} \\ \frac{\partial Q}{\partial U} & \frac{\partial Q}{\partial U} \end{bmatrix}^{(i)} \cdot \begin{bmatrix} \Delta \theta \\ \frac{\Delta V}{V} \end{bmatrix}^{(i)}$$

- Newton-Raphson has a quadratic convergence
- Normally +/- 7 iterations needed
- Principle Newton-Raphson iterative method:

Power Flow Alternative methods

- Gauss-Seidel
 - Old method (solves I=Y.V), not used anymore
 - Linear convergence
- Decoupled Newton-Raphson
 - Strong coupling between Q and V, and between P and δ
 - Weak coupling between P and V, and between Q and δ
 - ==> 2 smaller systems to solve ==> faster (2-3 times faster)

$$\begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix}^{(i)} = -\begin{bmatrix} \frac{\partial P}{\partial \theta} & 0 \\ 0 & \frac{\partial Q}{\partial V} \end{bmatrix}^{(i)} \cdot \begin{bmatrix} \Delta \theta \\ \frac{\Delta V}{V} \end{bmatrix}^{(i)}$$

Power Flow

Alternative methods (II)

- Fast decoupled Newton-Raphson
 - Neglects coupling as in decoupled Newton-Raphson
 - Approximation: Jacobian considered constant
- Newton-Raphson with convergence parameter
 - Step in right direction (first order) multiplied by factor
- DC load flow
 - Consider only B (not Y)
 - Single calculation (no iterations needed)
 - Very fast ==> 7-10 times faster than normal Newton-Raphson
 - In high voltage grids: 1 pu
 - Sometimes used as first value for Newton-Raphson iteration (starting value)
 - Economic studies and contingency analysis also use DC load flow

Available computer tools

- Available programs:
 - PSS/E (Siemens)
 - DigSILENT (power factory)
 - Eurostag (tractebel)
 - ETAP
 - Powerworld (demo version available for download)
 - Matpower (free download, matlab based)
 - PSAT: power system analysis toolbox (free download, matlab based)

• ...

Optimal power flow (OPF)

- Optimal power flow = power flow with a goal
- Optimizing for highest objective
 - Minimum losses
 - Economic dispatch (cheapest generation)

• ...

- Problem formulation minimize F(x, u, p) Objective function subject tog(x, u, p) = 0 Constraints
- Build the Lagrangian function

• $L = F(x, u, p) + \lambda^T g(x, u, p)$

Other optimization algorithms can also be used

Optimal power flow Example

	Directional		I	First-order	max				
lter		F-count	f(x)		constraint	Step-size	derivative	optimality	
0	1	4570.1	1.63						
1	3 5.28e+003	9656.06	0.3196		1			1.35e+004	
2	6	7345.79	0.2431		0.5		506		1.98e+003
3	9	5212.76	0.1449		0.5		1.41e+003		4.32e+004
4	11	5384.17	0.02825		1		367		2.83e+003
5	14	5305.59	0.08544		0.5		-132	696	
6	17	5439.61	0.07677		0.5		958	859	
7	19	5328.32	0.08351		1		144		1.04e+003
8	22	5267.51	0.1398		0.5		-82.7	730	
9	24	5301.72	0.05758		1		63.8	282	
10	26	5300.88	0.004961		1		17.3	406	
11	28	5295.95	0.003562		1		-0.325		116
12	30	5296.69	4.436e-005	5	1		1.15	30.8	
13	32	5296.69	8.402e-007	,	1		0.0222		4.99
14	34	5296.69	4.487e-009)	1			0.000728	0.431
15	36	5296.69	3.16e-011		1			2.75e-006	0.0113

may

Outline

Power system analysis and control

- Power system analysis
 - Power flow
 - Optimal power flow
- Power flow control
 - Primary control
 - Secondary control
 - Tertiary control
 - Voltage control

Control problem

- Complex MIMO system
 - Thousands of nodes
 - Voltage and angle on each node
 - Power flows through the lines (P and Q)
 - Generated power (P and Q), and voltage
 - OLTC positions
 - ...
 - Not everything is known!
 - Not every flow is known
 - Local or global control
 - Cross-border information
 - Output of power plants
 - Metering equipment is not always available or correct

Control problem Requirements

- Voltage must remain between its limits
 - 1 p.u. +/- 5 or 10 %
- Power flow through a line is limited
 - Thermal limit depending on section
- Frequency has to remain between strict limits
- Economic optimum

Control problem Assumptions

- P-f control and Q-U control can be separated $\tau_{Q-V} <\!\!\!\!< \tau_{P-f}$
- Voltage control is independent for each voltage controlled node
- Global system can be divided in control areas
 - Control area = region of generators that experience the same frequency perturbation

Control problem Separation of the problem

 $\Delta f_i \stackrel{\text{Ref}}{\text{and}} \stackrel{\text{Optrol}}{\xrightarrow{\text{transfered}}} \rightarrow \Delta \delta_i = phase fault$

• Using feedback: • $\Delta \delta_i$ results in $\Delta P_{c,i}$

Q-U control

- Measuring
- Control signal $U \rightarrow A | V |$, generator excitation and static Var compensation (capacitors or power electronics)

 $\Delta Q_{c,i}$

Turbine – Generator control

 ΔP_t , Setpoint

