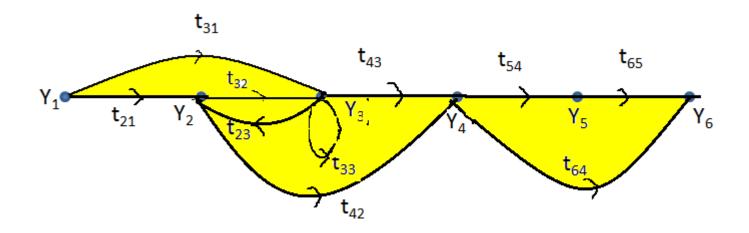
After joining all SFG



SFG from Differential equations

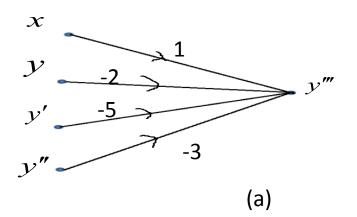
Consider the differential equation

$$y''' + 3y'' + 5y' + 2y = x$$

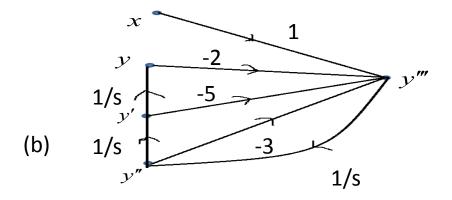
Step 1: Solve the above eqn for highest order

$$y''' = x - 3y'' - 5y' - 2y$$

Step 2: Consider the left hand terms (highest derivative) as dependent variable and all other terms on right hand side as independent variables. Construct the branches of signal flow graph as shown below:-

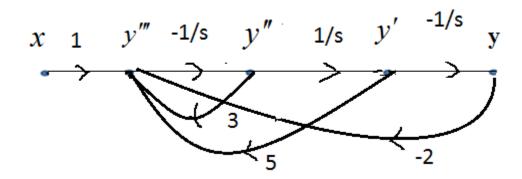


Step 3: Connect the nodes of highest order derivatives to the lowest order der.node and so on. The flow of signal will be from higher node to lower node and transmittance will be 1/s as shown in fig (b)

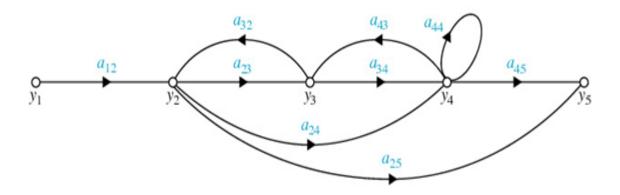


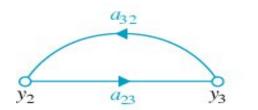
Step 4: Reverse the sign of a branch connecting y''' to y'', with condition no change in T/F fn.

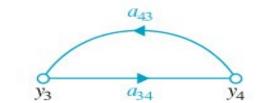
Step5: Redraw the SFG as shown.

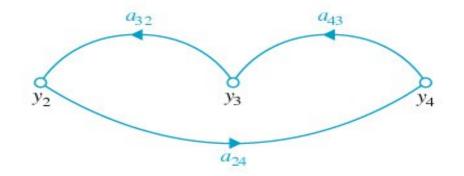


Problem: to find out loops from the given SFG

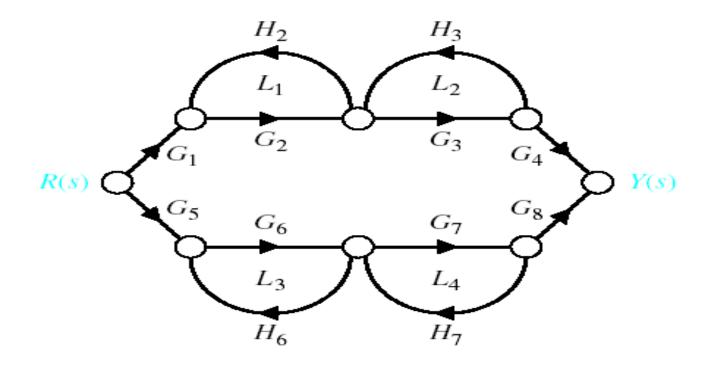


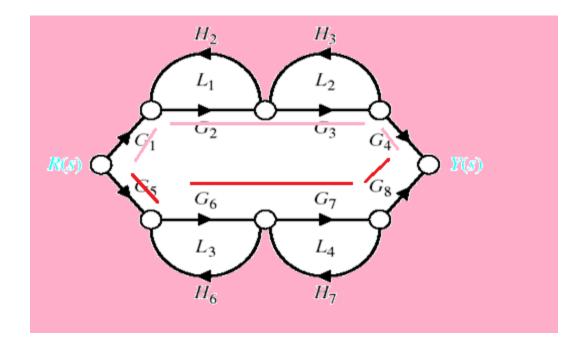






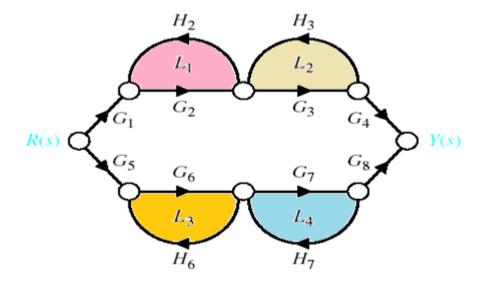
Ex: Signal-Flow Graph Models





$$\mathsf{P}_1 = \mathsf{G}_1 \cdot \mathsf{G}_2 \cdot \mathsf{G}_3 \cdot \mathsf{G}_4$$

$$\mathsf{P}_2 = \mathsf{G}_5 \cdot \mathsf{G}_6 \cdot \mathsf{G}_7 \cdot \mathsf{G}_8$$

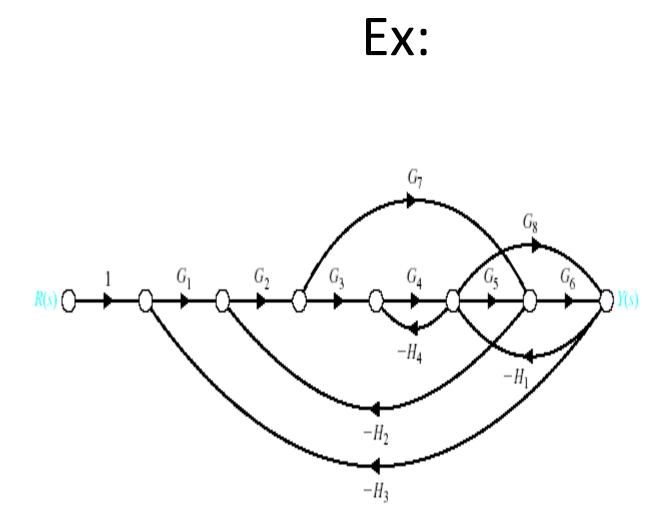


Individual loops

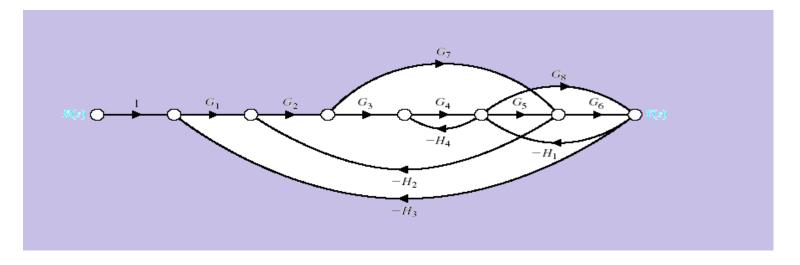
 $L_{1} = G_{2} H_{2}$ $L_{2} = G_{3} H_{3}$ $L_{3} = G_{6} H_{6}$ $L_{4} = G_{7} H_{7}$ Pair of Non-touching loops L_1L_3 L_1L_4 L_2L_3 L_2L_4

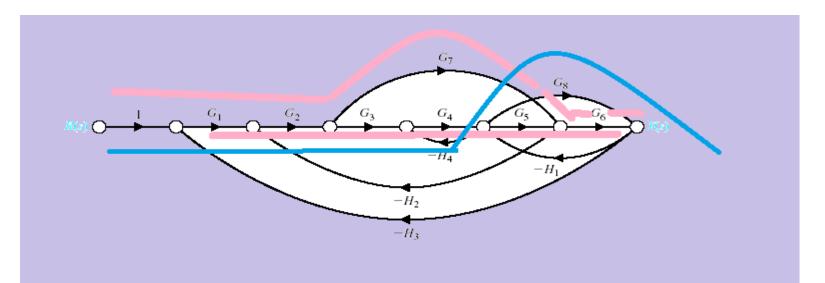
$$\frac{Y}{R} = \frac{\sum P_k \Delta_k}{(1 - (L1 + L2 + \dots) + \sum LiLj - \sum LiLjLk..)}$$

$$\frac{Y(s)}{R(s)} = \frac{\left[G_1 \cdot G_2 \cdot G_3 \cdot G_4 \cdot \left(1 - L_3 - L_4\right)\right] + \left[G_5 \cdot G_6 \cdot G_7 \cdot G_8 \cdot \left(1 - L_1 - L_2\right)\right]}{1 - L_1 - L_2 - L_3 - L_4 + L_1 \cdot L_3 + L_1 \cdot L_4 + L_2 \cdot L_3 + L_2 \cdot L_4}$$

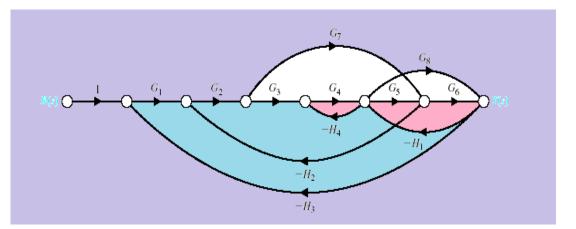


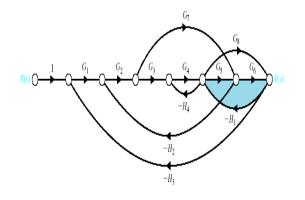
Forward Paths

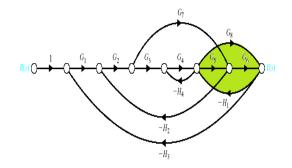




Loops







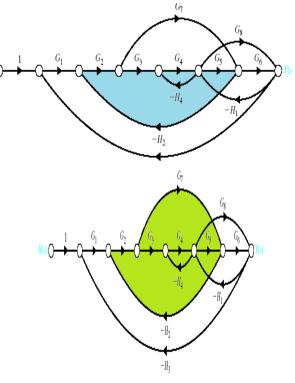
$$L_{1} = -G_{5} G_{6} H_{1}$$

$$L_{2} = -G_{2} G_{3} G_{4} G_{5} H_{2}$$

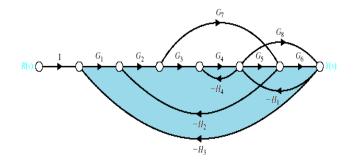
$$L_{3} = -G_{8} H_{1}$$

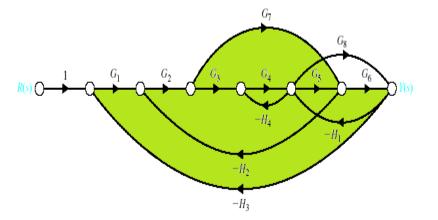
$$L_{4} = -G_{2} G_{7} H_{2}$$

$$L_{5} = -G_{4} H_{4}$$

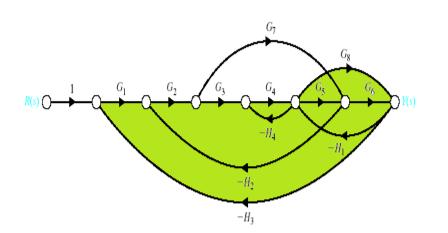


Loops



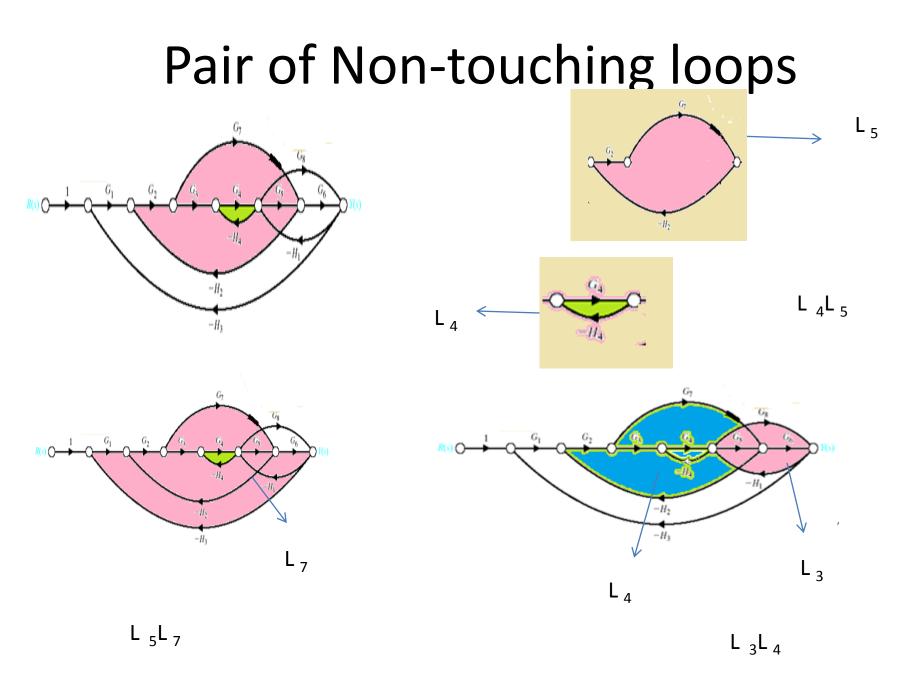


 $L_6 = -G_1G_2G_3G_4G_8H_3$

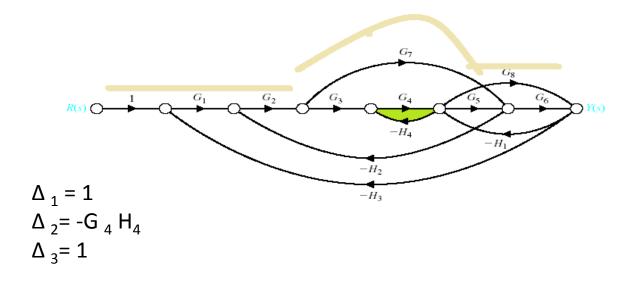


 $L_7 = -G_1G_2G_7G_6H_3$

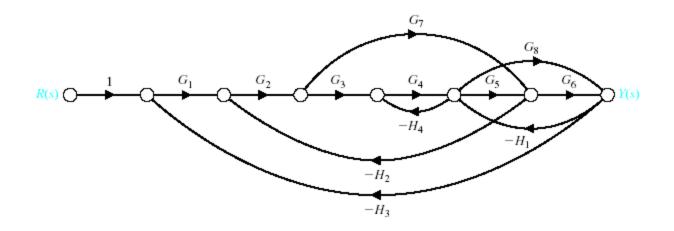
 L_8 = - $G_1G_2G_3G_4G_5G_6H_3$



Non-touching loops for paths



Signal-Flow Graph Models



$$\frac{\mathbf{Y}(\mathbf{s})}{\mathbf{R}(\mathbf{s})} = \frac{\mathbf{P}_1 + \mathbf{P}_2 \cdot \boldsymbol{\Delta}_2 + \mathbf{P}_3}{\Delta}$$

$$\begin{split} P_1 &= G_1 \cdot G_2 \cdot G_3 \cdot G_4 \cdot G_5 \cdot G_6 & P_2 &= G_1 \cdot G_2 \cdot G_7 \cdot G_6 & P_3 &= G_1 \cdot G_2 \cdot G_3 \cdot G_4 \cdot G_8 \\ \Delta &= 1 - \left(L_1 + L_2 + L_3 + L_4 + L_5 + L_6 + L_7 + L_8 \right) + \left(L_5 \cdot L_7 + L_5 \cdot L_4 + L_3 \cdot L_4 \right) \end{split}$$

 $\Delta_1 = \Delta_3 = 1 \qquad \qquad \Delta_2 = 1 - L_5 = 1 + G_4 \cdot H_4$

