

$$
\xrightarrow{R} \sqrt{\frac{G_{1} G_{2} G_{3}}{1-G_{1} G_{2} H_{1}+G_{2} G_{3} H_{2}+G_{1} G_{2} G_{3}}}
$$

Solution for same problem by using SFG

Forward Path

$$
\mathrm{P}_{1}=\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3}
$$

Loops

$\mathrm{L}_{1}=\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{H}_{1}$
$L_{2}=-G_{2} G_{3} H_{2}$

$$
\begin{aligned}
& \mathrm{P}_{1}=\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3} \\
& \mathrm{~L}_{1}=\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{H}_{1} \\
& \mathrm{~L}_{2}=-\mathrm{G}_{2} \mathrm{G}_{3} \mathrm{H}_{2} \\
& \mathrm{~L}_{3}=-\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3} \\
& \Delta_{1}=1 \\
& \Delta=1-\left(\mathrm{L}_{1}+\mathrm{L}_{2}+\mathrm{L}_{3}\right) \\
& \text { T.F }=\left(\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3}\right) /\left[1-\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{H}_{1}+\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3}+\mathrm{G}_{2} \mathrm{G}_{3} \mathrm{H}_{2}\right]
\end{aligned}
$$

SFG from given T/F

$$
\frac{C(s)}{R(s)}=\frac{24}{(s+2)(s+3)(s+4)}
$$

$$
\frac{1}{(s+2)}=\frac{s^{-1}}{\left(1+2 s^{-1}\right)}
$$

Ex:

Find the transfer function, $C(s) / R(s)$, for the signal-flow graph in figure below

First, identify the forward-path gains.

F1. $G_{1}(s) G_{2}(s) G_{3}(s) G_{4}(s) G_{5}(s)$

Second, identify the loop gains.

L1. $G_{2}(s) H_{1}(s)$
L3. $G_{7}(s) H_{4}(s)$
L2. $G_{4}(s) H_{2}(s)$
L4. $G_{2}(s) G_{3}(s) G_{4}(s) G_{5}(s) G_{6}(s) G_{7}(s) G_{8}(s)$

Third, identify the non-touching loops taken two at a time.

L1 and L2: $G_{2}(s) H_{1}(s) G_{4}(s) H_{2}(s) \quad \mathrm{L} 2$ and L3: $G_{4}(s) H_{2}(s) G_{7}(s) H_{4}(s)$
L 1 and L3: $G_{2}(s) H_{1}(s) G_{7}(s) H_{4}(s)$

Finally, identify the non-touching loops taken three at a time.

L1, L2, L3: $G_{2}(s) H_{1}(s) G_{4}(s) H_{2}(s) G_{7}(s) H_{4}(s)$

Now, form the Δ and Δk.

$$
\begin{aligned}
\Delta= & 1-\left[G_{2}(s) H_{1}(s)+G_{4}(s) H_{2}(s)\right. \\
& \left.+G_{7}(s) H_{4}(s)+G_{2}(s) G_{3}(s) G_{4}(s) G_{5}(s) G_{6}(s) G_{7}(s) G_{8}(s)\right] \\
& +\left[G_{2}(s) H_{1}(s) G_{4}(s) H_{2}(s)+G_{2}(s) H_{1}(s) G_{7}(s) H_{4}(s)\right. \\
& \left.+G_{4}(s) H_{2}(s) G_{7}(s) H_{4}(s)\right] \\
& -\left[G_{2}(s) H_{1}(s) G_{4}(s) H_{2}(s) G_{7}(s) H_{4}(s)\right]
\end{aligned}
$$

Δk is formed by [1- loop does not touch forward path]

$$
\Delta_{1}=1-G_{7}(s) H_{4}(s)
$$

Example of block diagram

Step 1: Shift take off point from position before a block G_{4} to position after block G_{4}

Step2 : Solve Yellow block.

(b)

Step3: Solve pink block.

(c)

Step4: Solve pink block.

(d)

Thanks

