
Time Response Specifications 



Introduction 
• A general second-order system is characterized by 

the following transfer function. 
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Introduction 

un-damped natural frequency of the second order system, 
which is the frequency of oscillation of the system without 
damping. 

22

2

2 nn

n

sssR

sC







)(

)(

n

damping ratio of the second order system, which is a measure 
of the degree of resistance to change in the system output. 





Example#1 
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• Determine the un-damped natural frequency and damping ratio 
of the following second order system. 
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• Compare the numerator and denominator of the given transfer 
function with the general 2nd order transfer function. 
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• Two poles of the system are 
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Introduction 

• According the value of        , a second-order system can be set into 
one of the four categories: 
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1. Overdamped - when the system has two real distinct poles (       >1). 
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• According the value of        , a second-order system can be set into 
one of the four categories: 
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2. Underdamped - when the system has two complex conjugate poles (0 <     <1) 
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Introduction 

• According the value of        , a second-order system can be set into 
one of the four categories: 
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3. Undamped - when the system has two imaginary poles (       = 0).  
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Introduction 

• According the value of        , a second-order system can be set into 
one of the four categories: 
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4. Critically damped - when the system has two real but equal poles (     = 1). 
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Time-Domain Specification 
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For 0<    <1 and ωn > 0, the 2nd order system’s response due to a 
unit step input looks like 





Time-Domain Specification 
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• The delay (td) time is the time required for the response to 
reach half the final value the very first time. 

 
 
 



Time-Domain Specification 
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• The rise time is the time required for the response to rise from 10% 
to 90%, 5% to 95%, or 0% to 100% of its final value.  
 

• For underdamped second order systems, the 0% to 100% rise time is 
normally used. For overdamped systems, the 10% to 90% rise time is 
commonly used. 
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Time-Domain Specification 
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• The peak time is the time required for the response to reach 
the first peak of the overshoot. 
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Time-Domain Specification 
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The maximum overshoot is the maximum peak value of the 
response curve measured from unity. If the final steady-state 
value of the response differs from unity, then it is common to 
use the maximum percent overshoot. It is defined by 
 
 
 
 
 
The amount of the maximum (percent) overshoot directly 
indicates the relative stability of the system. 
 



Time-Domain Specification 
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• The settling time is the time required for the response curve 
to reach and stay within a range about the final value of size 
specified by absolute percentage of the final value (usually 2% 
or 5%).  
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• Natural Undamped Frequency.  

n

• Distance from the origin of s-
plane to pole is natural 
undamped frequency in 
rad/sec. 
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• Let us draw a circle of radius 3 in s-plane. 
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• If a pole is located anywhere on the circumference of the circle the 
natural undamped frequency would be 3 rad/sec. 
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• Therefore the s-plane is divided into Constant Natural 
Undamped Frequency (ωn) Circles.  
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• Damping ratio.  

• Cosine of the angle between 
vector connecting origin and 
pole and –ve real axis yields 
damping ratio. 
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• For Underdamped system                            therefore,   900   10  
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• For Undamped system                  therefore,  90 0
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• For overdamped and critically damped systems                  
therefore,  

0

0
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• Draw a vector connecting origin of s-plane and some point P.  

P 
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• Therefore, s-plane is divided into sections of constant damping 
ratio lines.  


