Second — Order System

Second-order systems exhibit a wide range of
responses which must be analyzed and described.

e Whereas for a first-order system, varying a

single parameter changes the speed of response,

changes in the parameters of a second order

system can change the form of the response.

For example: a second-order system can display
characteristics much like a first-order system or,
depending on component values, display damped
or pure oscillations for its transient response.



Second — Order System

- A general second-order system is characterized by
the following transfer function:

G(5) = ——
T +as+b

- We can re-write the above transfer function in the
following form (closed loop transfer function):

;
N

G(s)=——— 1.

§T+20m s+@)




Second — Order System

@, (@ = ,h,'E} - referred to as the un-damped natural
" freguency of the second order system, which
is the frequency of oscillation of the system
without damping.
- referred to as the damping ratio of the

Z (& =—=) second order system, which is a measure of
2~/b the degree of resistance to change in the
system output.

Poles; —0OpG + mn\/gz —1

—0pt - mn\/cz —1

Poles are complex if (< 1!




Second — Order System

- According the value of (, a second-order system
can be set into one of the four categories:

1. Overdamped - when the system has two real
distinct poles (¢ >1).

2. Underdamped - when the system has two
complex conjugate poles (0 < <1)

3. Undamped - when the system has two
imaginary poles (¢ = 0).

4. Critically damped - when the system has two
real but equal poles (( = 1).



Time-Domain Specification

Given that the closed loop TF

T(S):C(S): w’

n

R(s) s*+2co0s5+m’

The system (2" order system) is parameterized by ¢ and w,

For 0< ¢ <1 and w, > 0, we like to investigate its response
due to a unit step input

cdry
A

N //—\
i 1 — Two types of responses that
are of interest:
(A)Transient response
| (B)Steady state response
Q 7, = T, T. N —_’J
YT Y

Transient Steady State >



(A) For transient response, we

have 4 specifications:
T — 6

(a) T, — rise time =

@,\1-¢"
(b) T K ti dl
- peak time =
P @,\1-¢"
: 7%
(c) %MP - percentage maximum overshoot = BN
e V' x100%
L 4
(d) T, - settling time (2% error) =
caw,

(B) Steady State Response

(a) Steady State error



Question : How are the performance
related to ¢and w,?

- Given a step input, i.e., R(s) =1/s, then the system output
(or step response) is;
N

Cs)= R)G(s) = —5——
( } } ( .5(-5_+2‘:mn5+£}§)

- Taking inverse Laplace transform, we have the step
response;

1 —"a F . f e .
o(f) =1————=e"" 5111(.&1H J1-C7t+ H}
"Hlll-.l. - :. -
i I
-1 "||I||I1 - -

Where; &=tan or @ =cos (&)

e |
- ]
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Second — Order System

2
T(c) = C(s) @,
I (S)_R(S)_ 2y 2cw s+ @
1 S +i00 .5+,
A
5 ==L, + jo1-°
» ERe
(1=
-1l VT =
g =tan™| {.
S e ¢ |
5y ==Ly — ja1-¢ \ = |

Mapping the poles into s-plane



Lets re-write the equation for c(t):

Let: pB=1-&7
a)\/ } Damped natural frequency

0 >0,

Thus:
c(t)=1- % e " sin(w,t + 6)

where O — cos ! (&)



Transient Response Analysis

1) Rise time, Tr. Time the response takes to rise from
0 to 100%

1 _ .
c(t)‘t:T =]——e " sm(a)dt + 6’) =1
! P ) |
Y Y
1/¢O : O
sin(a,T. +6) =0 O

o 7T, =
w,T +60=sin" (0)=r w J1—E?
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Transient Response Analysis

2) Peak time, Tp - The peak time is the time required for
the response to reach the first peak, which is given by;

c(.t) =0

l‘=Tp

c(.t) = —%(—ga)n )e " sm(a)dt+6’)—% “' cos(w,t + H)[con\/l—g2 ]: 0

I=Tp

o _ , o,N1-¢* | _
5Dn gmsonTy sin(w, T, +6) = [ ; }e senly cos(w,T, +6)

Im

5, S, + jaagAf1- 7 : +je1-47 1 g

;o tanf = ———
tan(w, T, +6) = ‘/l? S

ey

» Re
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We know that tan(f) = tan(rz + 60)

So, tan(w,T,+6)=tan(r+06)

From this expression:

|
S
N

ol

o, l, =7
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Transient Response Analysis

3) Percent overshoot, %0S - The percent overshoot is
defined as the amount that the waveform at the peak time
overshoots the steady-state value, which is expressed as a
percentage of the steady-state value.

C(T )—C(
YoMP = (g( )( )xl()()%
o0
OR
%08 C max —Cfinal 100

Cfinal



C(T,)—1 1

x100% = — r; e " sin(w,t + 6)x100%

i
__Ll, e sin[a)d (£] + Q)xl 00%
p @,

S
1

= —Ee Ji-e® sin(7z + 8)x100%

I
_80) V= 100% = e V5 x100%
S
From slide 24 B o s @ = 1_9'

6

5 » Re
L= \/? o
5, =—Lo, — jo, \;'? ’ -jo1-¢7 14




&

YoMP =¢ ‘/?xl 00%

Therefore,

- For given %0S, the damping ratio can
be solved from the above equation;

—In(%MP/100)

g:
J7 +1n*(%MP/100)
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Transient Response Analysis

4) Setting time, Ts - The settling time is the time
required for the amplitude of the sinusoid to decay
to 2% of the steady-state value.

To find T,, we must find the time for which c(t) reaches & stays
within +2% of the steady state value, ¢, The settling time is

the time it takes for the amplitude of the decaying sinusoid in c(t)
to reach 0.02, or

e s : =0.02

J1-¢?2

4

Thus, T = —
s,
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UNDERDAMPEL

-

Example 2: Find the natural frequency and damping
ratio for the system with transfer function

36
G(s)=—
Solution: s +4.25+36
Compare with general TF_
2 *wn=6
L’:??_r'
G(S] B ¢ =0.35

s?+ 2o s+ o

17



UNDERDAMPED

Example 3: Given the transfer function

100
2155 +100

G(s) =

find T, %0S,T,

Solution:

w =10 £=0.75

T, =0.533s, %005 =2.838%, T' =0.475s

18



UNDERDAMPEL

‘ Second-Order Response Specificationsl

R

19



b

G(s) =

Overdamped Response s +as+b
a=9
| Cwardamped systam I
. 1
R{s)=— C(s)
5 4 _
52 +95+9
2 poles. Mo zeros.
&E>1
Cls)=—s— 0

s(s* +95+9) B s(s+7.854)(s+1.146)

s=0; s=-7.854; s =-1.146 ( two real poles)

20



—7.854¢ —1.146¢
c(t)=K,+K,e +K.e

||:'_‘.I-..-E||'J.arn ped responsa I

L [T 1 & 4 Ty i e ] cidn i

OVERDAMPED RESPONSE !!]
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Underdamped Response

G(s) =

b

2
s +as+b

|I._In|:|er-;:lamped systam I

N
R-:;}—; 9 C[s.j

: 5° +3549

0<c<l

2 poles. Mo seros.

c(t)=K, +e "' (K, c0s2.598¢+ K, sin 2.598¢)

S

0:s

-1.5 £ j2.598 ( two complex poles)
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‘ Underdamped resp{:nsel

#—plang i .
.-'ll-.-- -
.-"'.:;_:5_'5:_...1-_.':_ WE ik —— I:lr . . P —
: |
13 g *
: sl
T 3
.-":*__n':._' ........ LR /
ak ;
i T I ] )] R

UNDERDAMPED RESPONSE !!!




b

G(s) =
) s*+as+b

Undamped Response

| Lindamped system '

R(s)=— 0 C'(s)

2 poles. Mo zeros.

c(t)=K,+K, cos 3t

s =0; s=1%j3 ( two imaginary poles)
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Undamped response I

i —plama Ja A1) §

WA i | 4 “\_I Y

UNDAMPED RESPONSE !!!



b

Critically Damped System G(s) =

2
s +as+b

|Griticall1_|.-' Damped Systeml

C(s)

9
s+ 65+9

£=1

c()=K, +K, e +K te™

2 poles. No zeros,

S=0;s=-3,-3(two real and equal poles)
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‘!L?riticallg,-r Damped HEEpDﬂEEI
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CRITICALLY DAMPED RESPONSE !!!
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Second — Order System

‘ second-order responses I

SE

ur'u-:lr:n:lalf'n p-Eu:f-__

1.5l
undamped

o S T crtically damped

overdampled

A -_. _.'

a . . . A .
a oL [ 1.8 r e ] ] 4
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Swvstem Pole-zero Plot Response

G(s)
) 1 :
ay RO =3 b )
s2+ags+ b
General
. c(f) c(H)=1+0.171le 7-8547
@ )
7 14 1.171e 1-14617
Gr(s) s-plane
) 1 :
(b R(s) — 5 [ C(s) o
S2+9.§' +9 —7854 —1]46 0.5_
Overdamped
0 1 2 3 4 s g
c() c(f) = 1 —e Ycosv 8¢ +“‘"§ siny 81)
e 1_417 = 1 —1.06e " cos(~8r— 19.477)
1.2
[STR s-plane
| : (s) _ P JAE 1
© R(s) — 5 [ C(s) 0.8
s2+ 29+ 9 ) d 0.6
. 0.4
Underdamped X — V8 0.2
(0]
(1)
Jo 2.“. c(r)y =1 — cos 3¢
s-plane -3 B
G(s) J
) 1 :
(d) R(s) = 5 9 C(s) -— o e
52+ 9 —i3
Undamped
I 1 1 -
0] 1 2 3 <} 5
c(r)
jm 3 & ¥ s
G (s) s—plane c(t)y =1 —3re 7" — e
: 1 : =T
(&) R(s)y = 5 [} C(s)
52+ 65 + O

Critically damped

|
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Effect of different damping ratio, ¢

n
-
- 1

y. 4 6 8 10 12 14
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Second — Order System

Example 4: Describe the nature of the second-order
system response via the value of the damping ratio for
the systems with transfer function

12
1. G(s) =
(5) s*+8s+12
2. G(s)= 16 Do them as your
2 +8¢+16 own revision
3. G(s) = — 2

s +8s+20
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