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Second – Order System 

 Second-order systems exhibit a wide range of 
responses which must be analyzed and described.  

• Whereas for a first-order system, varying a 
single parameter changes the speed of response, 
changes in the parameters of a second order 
system can change the form of the response. 
  
 For example: a second-order system can display 
characteristics much like a first-order system or, 
depending on component values, display damped 
or pure oscillations for its transient response. 
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Second – Order System 

- A general second-order system is characterized by 
the following transfer function: 

- We can re-write the above transfer function in the 
following form (closed loop transfer function): 
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Second – Order System 

- referred to as the un-damped natural 
frequency of the second order system, which 
is the frequency of oscillation of the system 
without damping. 

- referred to as the damping ratio of the 
second order system, which is a measure of 
the degree of resistance to change in the 
system output. 

Poles; 
Poles are complex if ζ< 1! 
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Second – Order System 

- According the value of ζ, a second-order system 
can be set into one of the four categories: 

1. Overdamped - when the system has two real 
distinct poles (ζ >1). 
2. Underdamped - when the system has two 
complex conjugate poles (0 <ζ <1) 
3. Undamped - when the system has two 
imaginary poles (ζ = 0).  
4. Critically damped - when the system has two 
real but equal poles (ζ = 1). 



Time-Domain Specification 
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Given that the closed loop TF 

The system (2nd order system) is parameterized by ς and ωn  

For 0< ς <1 and ωn > 0, we like to investigate its response 
due to a unit step input 

Transient Steady State 

Two types of responses that 
are of interest: 
(A)Transient response 
(B)Steady state response 



(A) For transient response, we 

have 4 specifications: 
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(a) Tr – rise time =  

(b) Tp – peak time =  

(c) %MP – percentage maximum overshoot =  

(d) Ts – settling time (2% error) = 
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(B) Steady State Response 

(a) Steady State error 
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Question : How are the performance 

related to ς and ωn ? 

- Given a step input, i.e., R(s) =1/s, then the system output 
(or step response) is; 

- Taking inverse Laplace transform, we have the step 
response; 

Where; or )(cos 1  
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Second – Order System 

Mapping the poles into s-plane 
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Lets re-write the equation for c(t): 

Let: 21  
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Damped natural frequency 
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Transient Response Analysis 

1) Rise time, Tr. Time the response takes to rise from 
0 to 100% 
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 Transient Response Analysis 

2) Peak time, Tp - The peak time is the time required for 
the response to reach the first peak, which is given by; 

0)( 




pTt

tc

  01)cos()sin()(
1

)( 21 















nd

t

d

t

n

pTt

tetetc nn

)cos()sin(
21




 










 

pd

T

pd

Tn TeTe pn
n

pn






21
)tan(


pdT 






1

tan



12 

We know that )tan()tan(  

So, )tan()tan(  pdT

From this expression: 
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3) Percent overshoot, %OS - The percent overshoot is 
defined as the amount that the waveform at the peak time 
overshoots the steady-state value, which is expressed as a 
percentage of the steady-state value. 

 Transient Response Analysis 

%100
)(

)()(
% x

C

CTC
MP

p






100
max

% x
Cfinal

CfinalC
OS




OR 



14 14 

 

%100%100
)sin(

%100sin
1

%100sin
1

22

2

2

11

1

1

xexe

xe

xe
d

d
n

n
























































































  %100sin
1

%100
1

1)(
xtex

TC
d

tp n 








21sin  

21  

From slide 24 



15 

- For given %OS, the damping ratio can 
be solved from the above equation; 

Therefore,  
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 Transient Response Analysis 

4) Setting time, Ts - The settling time is the time 
required for the amplitude of the sinusoid to decay 
to 2% of the steady-state value. 

To find Ts, we must find the time for which c(t) reaches & stays 
within +2% of the steady state value, cfinal. The settling time is 
the time it takes for the amplitude of the decaying sinusoid in c(t) 
to reach 0.02, or 

02.0
1

1

2








 snTe

Thus,  

n

sT


4




17 

UNDERDAMPED 

Example 2: Find the natural frequencynatural frequency and damping damping 
ratioratio for the system with transfer function 

Solution: 362.4
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Compare with general TF  

•ωn= 6 

•ξ =0.35 
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Example 3Example 3:: Given the transfer function 

UNDERDAMPED 

sTOSsT ps 475.0%,838.2%,533.0 

ps TOSTfind ,%,

Solution: 

75.010  n



19 

UNDERDAMPED 
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a = 9 

s= 0; s = s= 0; s = --7.854; s = 7.854; s = --1.146 1.146 ( two real poles)( two real poles)  
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OverdampedOverdamped  ResponseResponse  
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tt eKeKKtc 146.1
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OVERDAMPED RESPONSE !!!OVERDAMPED RESPONSE !!!  
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UnderdampedUnderdamped  ResponseResponse  

)598.2sin598.2cos()( 32

5.1

1 tKtKeKtc t  

s = 0; s = s = 0; s = --1.5 1.5 ±±  j2.598 j2.598 ( two complex poles)( two complex poles)  

a = 3 
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UNDERDAMPED RESPONSE !!!UNDERDAMPED RESPONSE !!!  
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Undamped ResponseUndamped Response  

a = 0 

tKKtc 3cos)( 21 

s = 0; s = s = 0; s = ±±  j3 j3 ( two imaginary poles)( two imaginary poles)  
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UNDAMPED RESPONSE !!!UNDAMPED RESPONSE !!!  
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a = 6 

Critically Damped SystemCritically Damped System  
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S = 0; s = S = 0; s = --3,3,--3 3 ( two real and equal poles)( two real and equal poles)  
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  CRITICALLY DAMPEDCRITICALLY DAMPED  RESPONSE !!!RESPONSE !!!  
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Second – Order System 
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Effect of different damping ratio, ξ 

Increasing ξ 
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Example 4: Describe the nature of the second-order 
system response via the value of the damping ratio for 
the systems with transfer function 

Second – Order System 
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Do them as your Do them as your 
own revisionown revision  


