
 

Root Locus Method 



No matter what we pick K to be, the closed-loop system must always have n poles, where 

n is the number of poles of G(s).  

The root locus must have n branches, each branch starts at a pole of G(s) and goes to a 

zero of G(s).  

If G(s) has more poles than zeros (as is often the case), m < n and we say that G(s) has 

zeros at infinity. In this case, the limit of G(s) as s -> infinity is zero.  

 

The number of zeros at infinity is n-m, the number of poles minus the number of zeros, 

and is the number of branches of the root locus that go to infinity (asymptotes).  

 

Since the root locus is actually the locations of all possible closed loop poles, from the 

root locus we can select a gain such that our closed-loop system will perform the way we 

want. If any of the selected poles are on the right half plane, the closed-loop system will 

be unstable. The poles that are closest to the imaginary axis have the greatest influence on 

the closed-loop response, so even though the system has three or four poles, it may still 

act like a second or even first order system depending on the location(s) of the dominant 

pole(s).  

The Root   Locus Method 



Example 



 Root Locus is the method of graphically displaying the roots of a polynomial 
equation having the following form on the complex plane when the parameter 
K varies from 0 to :  

 
 where N(s) and D(s) are known polynomials in factorized form: 

 

 
 Conventionally, the  NZ  roots of the polynomial N(s) , z1 , z2 , …, zNz , are called 

the finite open-loop zeros.  The  NP  roots of the polynomial D(s) ,  p1 , p2 , …, 
pNp , are called the finite open-loop poles.  

 

 

 Note:  By transforming the closed-loop characteristic equation of a feedback 
 controlled system with a single positive design parameter K into the 
 above standard form, one can use the Root Locus technique to 
 determine the range of K that have CL poles in the performance region.   

Root Locus – Definition  
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Root Locus Sketching Rules 

Rule 1: The number of branches of the root locus is equal to the number 
of closed-loop poles (or  roots of the characteristic equation). In 
other words, the number of branches is equal to the number of 
open-loop poles or open-loop zeros, whichever is greater. 

Rule 2: Root locus starts at open-loop poles (when K= 0) and ends at 
open-loop zeros (when K=).  If the number of open-loop poles 
is greater than the number of open-loop zeros, some branches 
starting from finite open-loop poles will terminate at zeros at 
infinity (i.e., go to infinity). If the reverse is true, some branches 
will start at poles at infinity and terminate at the finite open-loop 
zeros. 

Rule 3: Root locus is symmetric about the real axis, which reflects the 
fact that closed-loop poles appear in complex conjugate pairs. 

Rule 4: Along the real axis, the root locus includes all segments that are 
to the left of an odd number of finite real open-loop poles and 
zeros. 
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Root Locus Sketching Rules 

Rule 5: If number of poles NP exceeds the number of zeros NZ , then as K, 

(NP - NZ) branches will become asymptotic to straight lines. These 

straight lines intersect the real axis with angles k at 0 . 

 

 

  

 

  

 If NZ  exceeds NP , then as K0, (NZ  - NP) branches behave as 
above. 

 

 

Rule 6: Breakaway and/or break-in (arrival) points should be the solutions to 
the following equations: 
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Root Locus Sketching Rules 

Rule 7: The departure angle for a pole pi ( the arrival angle for a zero zi) can be 

calculated by slightly modifying the following equation: 

 
  The departure angle qj from the pole pj can be calculated by replacing the 

term                 with qj  and replacing all the s’s with  pj  in the other terms. 
 
 

 

Rule 8: If the root locus passes through the imaginary axis (the stability boundary), 

the crossing point  j  and the corresponding gain K can be found as 

follows: 

– Replace s in the left side of the closed-loop characteristic equation 

with j  to obtain the real and imaginary parts of the resulting 

complex number. 

– Set the real and imaginary parts to zero, and solve for  and K.  This 

will tell you at what values of K and at what points on the j axis the 

roots will cross. 
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Steps to Sketch Root Locus 
Step 1: Transform the closed-loop characteristic equation into the standard form 

for sketching root locus: 

 
 

Step 2: Find the open-loop zeros, zi, and the open-loop poles, pi.  Mark the open-
loop poles and zeros on the complex plane.  Use  to represent open-loop 
poles and  to represent the open-loop zeros. 

 

Step 3: Determine the real axis segments that are on the root locus by applying 
Rule 4. 

 

Step 4: Determine the number of asymptotes and the corresponding intersection 
0 and angles k  by applying Rules 2 and 5. 

 

Step 5: (If necessary) Determine the break-away and break-in points using Rule 6. 
 

Step 6: (If necessary) Determine the departure and arrival angles using Rule 7. 
 

Step 7: (If necessary) Determine the imaginary axis crossings using Rule 8. 
 

Step 8: Use the information from Steps 1-7 and Rules 1-3 to sketch the root locus. 
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Example 1 
DC Motor Position Control 

In the previous example on the printer paper advance position control, the proportional control 

block diagram is: 

 

 

 

 

 

Sketch the root locus of the closed-loop poles as the proportional gain KP varies from 0 to . 
 

Find closed-loop characteristic equation: 
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Example 1 

Step 1: Transform the closed-loop characteristic equation into the standard form for 
sketching root locus: 

 

 

 

 

 

Step 2: Find the open-loop zeros, zi , and the open-loop poles, pi : 

 

 

 

 

 

Step 3: Determine the real axis segments that are to be included in the root locus by 
applying Rule 4. 
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Example 1 

Step 4: Determine the number of asymptotes and the corresponding intersection 0  

and angles k  by applying Rules 2 and 5. 

 

 

 

Step 5: (If necessary) Determine the break-away and break-in points using Rule 6. 

 

 

 

Step 6: (If necessary) Determine the departure and arrival angles using Rule 7. 

 

 

Step 7: (If necessary) Determine the imaginary axis crossings using Rule 8. 
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Example 1 
Step 8: Use the information from Steps 1-7 and Rules 1-3 to sketch the root locus. 
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Example 2 

A positioning feedback control system is proposed.  The corresponding block diagram 

is: 

 

 

 

 

Sketch the root locus of the closed-loop poles as the controller gain K varies from 0 to 

. 
 

Find closed-loop characteristic equation: 
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Example 2 
Step 1: Formulate the (closed-loop) characteristic equation into the standard form 

for sketching root locus: 

 

 

 

 

Step 2: Find the open-loop zeros, zi , and the open-loop poles, pi : 

 

 

 

 

 

Step 3: Determine the real axis segments that are to be included in the root locus 
by applying Rule 4. 
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Example 2 
Step 4: Determine the number of asymptotes and the corresponding intersection 0 and 

angles k  by applying Rules 2 and 5. 

 

 

 

 

 

 

Step 5: (If necessary) Determine the break-away and break-in points using Rule 6. 
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Example 2 
Step 6: (If necessary) Determine the departure and arrival angles using Rule 7. 

Step 7: (If necessary) Determine the imaginary axis crossings using Rule 8. 

Step 8: Use the information from Steps 1-7 and Rules 1-3 to sketch the root locus. 
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Example 3 
A feedback control system is proposed.  The corresponding block diagram is: 

 

 

 

 
 

Sketch the root locus of the closed-loop poles as the controller gain K varies from 

0 to . 
 

Find closed-loop characteristic equation: 
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Example 3 

Step 1: Transform the closed-loop characteristic equation into the 

standard form for sketching root locus: 

 

 

 

Step 2: Find the open-loop zeros, zi , and the open-loop poles, pi : 

 

 

Step 3: Determine the real axis segments that are to be included in 

the root locus by applying Rule 4. 
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Example 3 
Step 4: Determine the number of asymptotes and the corresponding intersection 0 and 

angles k  by applying Rules 2 and 5. 

 

 

 

 

 

 

 

Step 5: (If necessary) Determine the break-away and break-in points using Rule 6. 
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Example 3 

Step 6: (If necessary) Determine the departure and arrival angles using Rule 7. 

 

 

 

 

 

 

 

Step 7: (If necessary) Determine the imaginary axis crossings using Rule 8. 
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Example 3 
Step 8: Use the information from Steps 1-7 and Rules 1-3 to sketch the root locus. 
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Example 4 
A feedback control system is proposed.  The corresponding block diagram is: 

 

 

 

 

Sketch the root locus of the closed-loop poles as the controller gain K varies from 0 to 

. 
 

Find closed-loop characteristic equation: 
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Example 4 

Step 1: Formulate the (closed-loop) characteristic equation into the standard 

form for sketching root locus: 

 

 

 

Step 2: Find the open-loop zeros, zi , and the open-loop poles, pi : 

 

 

Step 3: Determine the real axis segments that are to be included in the root 

locus by applying Rule 4. 
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Example 4 
Step 4: Determine the number of asymptotes and the corresponding intersection 0 and angles k  

by applying Rules 2 and 5. 

 

Step 5: (If necessary) Determine the break-away and break-in points using Rule 6. 

Step 6: (If necessary) Determine the departure and arrival angles using Rule 7. 

 

 

 

 

 

Step 7: (If necessary) Determine the imaginary axis crossings using Rule 8. 
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Example 4 
Step 8: Use the information from Steps 1-7 and Rules 1-3 to sketch the root locus. 
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Mechanical system response depends on the location of the system characteristic values, 

i.e., poles of the system transfer function.  Since root locus tells us how the system poles 

vary w.r.t. a parameter K, we can use root locus to analyze the effect of parameter 

variation on system performance. 
 

Ex: ( Motion Control of Hydraulic Cylinders ) 

Root Locus as an Analysis/Design Tool 

M 

qqININ  

Recall the example of the flow control of a hydraulic 

cylinder that takes into account the capacitance effect of 

the pressure chamber.  The plant transfer function is: 

 
 

where M is the mass of the load; C is the flow capacitance 

of the pressure chamber; A is the effective area of the 

piston and B is the viscous friction coefficient. 

Q: How would the plant parameters affect the system 

 response ? 
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Root Locus as an Analysis/Design Tool 
• Effect of load (M) on system performance: 

 System characteristic equation: 

 

 Transform characteristic equation into standard form for root locus analysis by identifying the parameter 

that is to be varied.  In this case, the load mass M is the varying parameter: 
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Small M: less overshoot and high natural frequency 

As M increases: larger overshoot and lower natural frequency 

Think about the settling time 



Root Locus as an Analysis/Design Tool 
• Effect of flow capacitance (C) on system performance: 

 System characteristic equation: 

 

 Transform characteristic equation into standard form for root locus analysis by identifying the parameter 

that is to be varied.  In this case, the flow capacitance C is the varying parameter: 
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Smaller C (or less compressible fluid): 

Larger oscillating frequency and overshoot 

Larger C: smaller oscillating frequency and overshoot 



Root Locus as an Analysis/Design Tool 
• Effect of friction (B) on system performance: 

 System characteristic equation: 

 

 Transform characteristic equation into standard form for root locus analysis by identifying the parameter 
that is to be varied.  In this case, the viscous friction coefficient B is the varying parameter: 
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Smaller B: 

Larger oscillating frequency and overshoot 

Larger B: smaller oscillating frequency and overshoot 

settling time? 


