Root Locus Method




The Root Locus Method

No matter what we pick K to be, the closed-loop system must always have n poles, where
n 1s the number of poles of G(s).

The root locus must have n branches, each branch starts at a pole of G(s) and goes to a
zero of G(s).

If G(s) has more poles than zeros (as 1s often the case), m <n and we say that G(s) has
zeros at infinity. In this case, the limit of G(s) as s -> infinity is zero.

The number of zeros at infinity 1s n-m, the number of poles minus the number of zeros,
and 1s the number of branches of the root locus that go to infinity (asymptotes).

Since the root locus is actually the locations of all possible closed loop poles, from the
root locus we can select a gain such that our closed-loop system will perform the way we
want. If any of the selected poles are on the right half plane, the closed-loop system will
be unstable. The poles that are closest to the imaginary axis have the greatest influence on
the closed-loop response, so even though the system has three or four poles, it may still
act like a second or even first order system depending on the location(s) of the dominant

pole(s).



Example Mote: This controller has adjustable zain. &fter this desizn
‘ 15 bonlt we must anticipate that all values of K will be
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First, we must develop a transfer function for the extive control systern.
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Mext, weuse the charactenstic equation of the denoranator to find the roots as
the walue of E. warles. These can then be plotted on a cormplex plane. Hote:
the walue of gain 'K 1z normally found frorn O to +ixdinity
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Mote: becanse all of the roots for all values of K are real negatmee this systern will
always be stable, and it will always tend to have a daraped response. The large the
value of F, the more stable the systern becomes.



Root Locus — Definition

Root Locus 1s the method of graphically displaying the roots of a polynomial
equation having the following form on the complex plane when the parameter
K varies from 0 to oo:

N(s) _

1+K-G(s)=0 or 1+K-:
D(s)

where N(s) and D(s) are known polynomials 1n factorized form:

N(s)=(s—z)(s—z,) )

V)

D(s)=(s—p)(s—p,)- -.H)

Conventionally, the N, roots of the polynomial M(s) , z,, z,, ..., z,, are called
the finite open-loop zeros. The N, roots of the polynomial D(s), p,, p,, ...,
Py, are called the finite open-loop poles.

0

Note: By transforming the closed-loop characteristic equation of a feedback
controlled system with a single positive design parameter K into the
above standard form, one can use the Root Locus technique to
determine the range of K that have CL poles in the performance region.



Root Locus Sketching Rules
.N(S):O — 1+ K. (S_Zl)(S_Zz)'”(S_ZNZ) _
D(s) (s=p)(s—p,)-(s—py,)

1+ K

Rule 1: The number of branches of the root locus is equal to the number
of closed-loop poles (or roots of the characteristic equation). In
other words, the number of branches is equal to the number of
open-loop poles or open-loop zeros, whichever is greater. p(s)+kn(s)=0

Rule 2: Root locus starts at open-loop poles (when K= 0) and ends at
open-loop zeros (when K=w). If the number of open-loop poles
is greater than the number of open-loop zeros, some branches
starting from finite open-loop poles will terminate at zeros at
infinity (i.e., go to infinity). If the reverse is true, some branches
will start at poles at infinity and terminate at the finite open-loop
Zeros. D)+ENG()=0 g — 0?2 K =o00?

Rule 3: Root locus is symmetric about the real axis, which reflects the
fact that closed-loop poles appear in complex conjugate pairs.

Rule 4: Along the real axis, the root locus includes all segments that are
to the left of an odd number of finite real open-loop poles and
Zeros. N(S)

D(s)

Check the phases UK

=/—1=r[rad]|=180




Root Locus Sketching Rules

Rule 5: If number of poles N, exceeds the number of zeros N, , then as K—,
(Np - N,) branches will become asymptotic to straight lines. These
straight lines intersect the real axis with angles 6, at o .

B Z Di— ZZl- _ Sum of open-loop poles — Sum of open-loop zeros

N »—N, # of open-loop poles — # of open-loop zeros
0, = 2k +1)—" [rad] = 2k +1)—>>_ [deg], k=0, 1,2, ---
P 1tVz p 'z
If N, exceeds Ny, then as K—0, (N, - Np) branches behave as
above.

Rule 6: Breakaway and/or break-in (arrival) points should be the solutions to

the following equations:
dgiN(S)i] =0 or i(D(S)j =0
ds\ D(s) ds\ N(s)




Rule 7:

Root Locus Sketching Rules

The departure angle for a pole p; ( the arrival angle for a zero z;) can be
calculated by slightly modifying the following equation:

angle _, L(s—z)+Ls—z,)++Ls—z,) = Ls—p) = Ls—p,) == Ls—py ) =180°

criterion

Rule 8:

The departure angle g; from the pole p; can be calculated by replacing the
term Z(s—p;) with g; and replacing all the s’s with p; in the other terms.

If the root locus passes through the imaginary axis (the stability boundary),

the crossing point jo and the corresponding gain K can be found as

follows:

— Replace s in the left side of the closed-loop characteristic equation
with jo to obtain the real and imaginary parts of the resulting
complex number.

— Set the real and 1maginary parts to zero, and solve for w and K. This
will tell you at what values of K and at what points on the jw axis the

roots will cross. .
1{_|S_Z71||S_172|"'I A.r|
magnitude criterion —— B s — z,||s — =] '
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Step 1:

Step 2:

Step 3:

Step 4.

Step 3:
Step 6:
Step 7:
Step 8:

Steps to Sketch Root Locus

Transform the closed-loop characteristic equation into the standard form
for sketching root locus:

N(s) 0 or 14+ K- (s—z)(—2) - (s—2zy,) —0
D(s) (s =p)(s—=py) - (s—py,)
Find the open-loop zeros, z;, and the open-loop poles, p;,. Mark the open-
loop poles and zeros on the complex plane. Use x to represent open-loop
poles and O to represent the open-loop zeros.

1+ K-

Determine the real axis segments that are on the root locus by applying
Rule 4.

Determine the number of asymptotes and the corresponding intersection
0, and angles 6, by applying Rules 2 and 5.

(If necessary) Determine the break-away and break-in points using Rule 6.
(If necessary) Determine the departure and arrival angles using Rule 7.
(If necessary) Determine the imaginary axis crossings using Rule 8.

Use the information from Steps 1-7 and Rules 1-3 to sketch the root locus.



Example 1

DC Motor Position Control

In the previous example on the printer paper advance position control, the proportional control
block diagram is:

0 0 E, 16
—2 | 003 F—X—>o0 .I Kp ——! 5(0.0174s+1) ¢,
‘ Controller Plant G(s)
O 0.03 |

Sketch the root locus of the closed-loop poles as the proportional gain K, varies from 0 to .

Find closed-loop characteristic equation.

1+KpG(S)H(S) =0

0.48
N(s) _
I+K, N N174e 1)

D(s)



Example 1

Step 1. Transform the closed-loop characteristic equation into the standard form for
sketching root locus:

1

N(s) _
1+27.58K, <l ¢ 87 A7\ O

K ) D\(fs) }
Step 2: Find the open-loop zeros, z;, and the open-loop poles, p; :

No open-loop zeros

open-loop poles|  p, =0, p, =—57.47

Step 3: Determine the real axis segments that are to be included in the root locus by
applying Rule 4. A

p, =—5147 p, =0




Example 1

Step 4: Determine the number of asymptotes and the corresponding intersection o,
and angles 6, by applying Rules 2 and 5.

oo > pi—>.z _ 5747 _ e
¢ N,—N, 2

7C

37T

7T
0, =R2k+1 rad] =1 2
e = ¢ )NP—NZ Lrad] {2

Step 5: (If necessary) Determine the break-away and break-in points using Rule 6.
ANV _g o 2D _
ds [D(S)J 0 ds [N(s)j 0-

i[s(0.0l74s+l)

=0,0.03485+1=0,s = —-28.74
ds 0.48

Step 6: (If necessary) Determine the departure and arrival angles using Rule 7.
—Z(p,—p)-0, =180",v, —v
-0, —Z(p,— p,)=180",u, — 10V’
Step 7: (If necessary) Determine the imaginary axis crossings using Rule 8.
Could s be pure imaginary in this example?



Example 1

Step 8. Use the information from Steps 1-7 and Rules 1-3 to sketch the root locus.

Img. Axis
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-57.47 -28.74
Real Axis —9¢ ; ¥ 0

-10

-20

-30




Example 2

A positioning feedback control system is proposed. The corresponding block diagram

1S:
R(s) + Ko 2 50) Us) 16 Y(s)
5(0.0174s+1) '
— Controller Plant G(s)

Sketch the root locus of the closed-loop poles as the controller gain K varies from 0 to
0,

Find closed-loop characteristic equation:

1+ G, (s)G(s)H(s)=0

16
1+ K (s+80 =0
R 80) S o7 )




Example 2

Step 1: Formulate the (closed-loop) characteristic equation into the standard form
for sketching root locus:

16( ¢ £ 80\ K (cxrn)
%r_/
1+K—2 14900k |—2
(0 0174¢ 1) ol ¢ £ 87 47N
%f—/ %r—/
D(s) D(s)

Step 2:  Find the open-loop zeros, z;, and the open-loop poles, p; :

open-loop zeros z, =—80

open-loop poles| p, =0, p, =—-57.47

Step 3: Determine the real axis segments that are to be included in the root locus
by applying Rule 4.

z, =—80 p,=-5747 P, =0




Example 2

Step 4:  Determine the number of asymptotes and the corresponding intersection o, and
angles 6, by applying Rules 2 and 5.

Step 5:  (If necessary) Determine the break-away and break-in points using Rule 6.

a mjo o i{&}o

ds\ D(s) ds\ N(s))

9

d [ (s+80) ]: s(s+57.47)—(s+80)(2s+57.47)

ds| (s +5747) [s(s+57.47)]
s* +160s +4600 =0

5, =-122,5,=-376



Example 2

Step 6: (If necessary) Determine the departure and arrival angles using Rule 7.
Step 7:  (If necessary) Determine the imaginary axis crossings using Rule 8.

Step 8:  Use the information from Steps 1-7 and Rules 1-3 to sketch the root locus.

Imag Axis

40

30

20

10

+ 0
. P =

Real Axis <&

-10

-140 -120 -100 -80 -60 -40 -20 0



Example 3

A feedback control system is proposed. The corresponding block diagram is:

R * K | ug | ! 1) |
_ (s+4) s(s* +4s +20) ”
Controller Plant G(s)

Sketch the root locus of the closed-loop poles as the controller gain K varies from
0 to oo.

Find closed-loop characteristic equation:

1+ G, (S)G(S)H(S) =0

1+ K 1 =0

s+4 S(S2+4S—|—20)




Example 3

Step 1: Transform the closed-loop characteristic equation into the

standard form for sketching root locus.:
1

N(s)

sls? +45+20)(s+4) B

.

1+ K

D(s)

Step 2: Find the open-loop zeros, z;, and the open-loop poles, p; :

open-loop zeros|  No open-loop zeros

open-loop poles] p, =0,p, =—4,p,, =—12+4;

Step 3: Determine the real axis segments that are to be included in
the root locus by applying Rktle 4.

—x B
p,=—4 p=0




Example 3

Step 4: Determine the number of asymptotes and the corresponding intersection o, and
angles 0, by applying Rules 2 and 5.

. :Zp,-—ZZi _O+(—4)+(—2+4j)+(—2—4j)__2
0 N,—N, B 4-0 B
a4
3¢
- 27z
O, =2k +1 rad] =4 4
= ( o [radl =4 2
4
z7
4

.

Step 5: (If necessary) Determine the break-away and break-in points using Rule 6.
d(N@s)) . d(D@s))_

d [M) d (S(Sz +4S+20)(S+4)J:i(s4 +85” + 365 +80S)

% N(s) :Z 1 ds

=45 +245* +725+80=0
s, =-2,8,,=—2%2.45]



Example 3

Step 6:  (If necessary) Determine the departure and arrival angles using Rule 7.
N N,
Y L(s—z)— D Z(s—p,)=180°
= i=1

p,=0: 0,=180° p,==2+4j: 6 =90

P3

p,=—4: 0, =0° p,=—2-4j: 6 =90

P4

Step 7:  (If necessary) Determine the imaginary axis crossings using Rule 8.

1 2
1+ K —0 s(s*+4s5+20)(s+4)+K =0
’ S(S2+4S+20)(S+4) = ( )

CLCE
/

< 5" +85°+36s*+80s+K =0

S=_j6()4 2 3

——{ 0" -360" + K)+ (-8’ +80w) j =0
{w4—36a)2+K:0:>{K1=0 {K2=260

= :
—80° +80w =0 0 =0"|w,=10=3.16



Example 3

Step 8: Use the information from Steps 1-7 and Rules 1-3 to sketch the root locus.
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Example 4

A feedback control system is proposed. The corresponding block diagram is:

R(s) + I Us) | s*+2s+101 | Y
- ‘ (5 +2)(s +25 +26) '
Controller Plant G(s)

Sketch the root locus of the closed-loop poles as the controller gain K varies from 0 to
0,

Find closed-loop characteristic equation:

s’ +2s+101

1+K(S+2)(S2+2S+26):O




Example 4

Step 1: Formulate the (closed-loop) characteristic equation into the standard
form for sketching root locus:
§2 +2s+101

1+ K M) =0
’ (s+2)(s +25+26)

.

D(s)

Step 2: Find the open-loop zeros, z;, and the open-loop poles, p; :

open-loop zeros s*+2s+101=(s+1)" +100=0,z,, =-1+10,

open-loop poles (s+20(s +1F +25)=0,p, =2, p,, =15
Step 3: Determine the real axis segments that are to be included in the root
locus by applying Rule 4.




Example 4

Step 4: Determine the number of asymptotes and the corresponding intersection o, and angles 0,

by applying Rules 2 and 5.
Np_NZ —1 One asymptote Qk =(2k—|—1)><180 — 10V
Step 5. (If necessary) Determine the break-away and break-in points using Rule 6.

Step 6. (If necessary) Determine the departure and arrival angles using Rule 7.
p=—2 ‘9171 =180°
z,=—1+10; 6, +90° —tan"'(10)—90° —90° =180

6, =354" =—6'
z,=-1-10j o _¢o py=-1-5j ¢ =-11

p,=—1+5) (9p2=110

Step 7. (If necessary) Determine the imaginary axis crossings using Rule 8.

(s+2)(s> +25+26)+ K(s> +25+101)=0
&8 +(@4+K)s* +(30+2K)s +(52+101K)=0

Z(52+101K)- 4+ K)o ]+ [30+ 2K ) - Joj = 0

(52+101K)~(4+ K)o’ =0 _ @=0 (95 [w=57
[(30+2K)- |@=0 K =-2% ’
101



Example 4

Step 8:  Use the information from Steps 1-7 and Rules 1-3 to sketch the root locus.

1 o e S S— ———— A Sufgirpn
9.5273?\
Stability condition
6 5.665’8‘,5/_1
4
0<K<l.1
2
or
K >304 o< ¥
2
4
xg::::“
© 5.6658] |
-8
-9.5273]
10 oe/
18 16 14 12 10 -4 2 0



Root Locus as an Analysis/Design Tool

Mechanical system response depends on the location of the system characteristic values,
1.e., poles of the system transfer function. Since root locus tells us how the system poles

vary w.r.t. a parameter K, we can use root locus to analyze the effect of parameter
variation on system performance.

Ex: ( Motion Control of Hydraulic Cylinders ) K’ /
Recall the example of the flow control of a hydraulic

cylinder that takes into account the capacitance effect of \

the pressure chamber. The plant transfer function is: B

G(s) = V(s) _ : A :
On(s) MCs”+BCs+ A4
where M is the mass of the load; C is the flow capacitance ‘

of the pressure chamber; A4 is the effective area of the
piston and B is the viscous friction coefficient.

qin

Q: How would the plant parameters affect the system
response !



Root Locus as an Analysis/Design Tool

« Effect of load (M) on system performance:

System characteristic equation:

2 2
MCs” +BCs+ A" =0
Transform characteristic equation into standard form for root locus analysis by identifying the parameter
that is to be varied. In this case, the load mass M is the varying parameter:

C _ e
Standard form 1+KN(S) 0 1+M_——==0

D (S ) — Img. Axis
/ N~ A
D(v)

Varying parameter

open-loop zeros| %1 =22 =0
A2
open-loop poles o ="sc
d [ N(s) :ojsz_ﬁ, ~ 0 I Ml ,z, Real
ds\ D(s) BC Axis
Small M: less overshoot and high natural frequency ~

As M increases: larger overshoot and lower natural frequency

Think about the settling time




Root Locus as an Analysis/Design Tool

« Effect of flow capacitance (C) on system performance:
System characteristic equation: MCS2 + BCs + A2 =0

Transform characteristic equation into standard form for root locus analysis by identifying the parameter
that is to be varied. In this case, the flow capacitance C is the varying parameter:

( B
N (S) S| s+
Standard form 1+ K—~%=0 N .
/ D(S) 1+ C 1\12 N(s) —0 Im%.A)us
: A 1
Varying parameter D(s) N
- O - B \\
open-loop zeros| =1 = Y-F2 T T . N
open-loop poles| NO open-loop poles I N
i(N(S)jzo:sz—i Ge BN >
ds\ D(s) 2M 22 /////7 Zl Real
Smaller C (or less compressible fluid): T Axis
Larger oscillating frequency and overshoot - /
Larger C: smaller oscillating frequency and overshoot




Root Locus as an Analysis/Design Tool

« Effect of friction (B) on system performance:
System characteristic equation: MCS2 + BCs + Az —0

Transform characteristic equation into standard form for root locus analysis by identifying the parameter
that is to be varied. In this case, the viscous friction coefficient B is the varying parameter:

S
Standard form 1+ KM —_ol+ B I N(SLP =0
/ D(S) 5%+ S
— _ Img. Axis
Varying parameter D(s) \ i
open-loop zeros z =0 —
open-loop poles| 22 =\ 30 ~_
i(&jzoj __ |4
ds\ N(s) MC
Smaller B: _

Larger oscillating frequency and overshoot

Larger B: smaller oscillating frequency and overshoot

settling time?




