Root Locus

Closed-loop control system with a variable parameter K.

Unity feedback control system. The gain K is a variable parameter.

Root locus for a second-order system when $K_e < K_1 < K_2$. The locus is shown in color.

Evaluation of the angle and gain at s_1 , for gain $K=K_1$.

(a) Single-loop system. (b) Root locus as a function of the parameter a.

(a) The zero and poles of a second-order system,(b) the root locus segments,and (c) the magnitude of each vector at s1.

A fourth-order system with (a) a zero and (b) root locus.

Illustration of the breakaway point (a) for a simple secondorder system and (b) for a fourth-order system.

A graphical evaluation of the breakaway point.

Closed-loop system.

Evaluation of the (a) asymptotes and (b) breakaway point.

Illustration of the angle of departure:(a) Test point infinitesimal distance from p_1 ;(b) actual departure vector at p_1

Evaluation of the angle of departure.

$$1 + \frac{K}{s(s+4)(s+4+j4)(s+4-j4)} = 0$$

$$s(s + 4)(s^{2} + 8s + 32) + K = s^{4} + 12s^{3} + 64s^{2} + 128s + K = 0.$$

The root locus for Example 7.4:locating (a) the poles and (b) the asymptotes.

- 1.Write the characteristic equation in pole-zero form so that the parameter of interest k appears as 1+kF(s)=O.
- 2.Locate the open-loop poles and zeros of F(s) in the s-plane.
- 3.Locate the segments of the real axis that are root loci.
- 4. Determine the number of separateloci.
- 5.Locate the angles of the asymptotes and the center of the asymptotes.
- 6.Determine the break away point on the real axis(if any).
- 7.By utilizing the Routh-Hurwitz criterion, determine the point at which the locus crosses the imaginary axis(if it does so).
- 8.Estimate the angle of locus departure from complex poles and the angle locus arrival at complex zeros.

- 1. Select the parameters and the specifications of the feedback system.
- 2. Obtain a model and signal-flow diagram representing the system.
- 3. Select the gain K based on a root locus diagram.
- 4. Determine the dominant mode of response.

Table 6.4. Specifications	
Steady-state error	$K_p = \infty$
Underdamped response	$\xi = 0.5$
Settling time	Less than 2 sec

$$s(s + 8\sqrt{3})\left(s + \frac{K_m}{10\pi}\right) + \frac{96K_m}{10\pi} = 0$$

$$1 + KP(s) = 1 + \frac{(K_m/10\pi)[s(s+8\sqrt{3})+96]}{s^2(s+8\sqrt{3})} = 0$$

= 1 + $\frac{(K_m/10\pi)(s+6.93+j6.93)(s+6.93-j6.93)}{s^2(s+8\sqrt{3})}$

 $s^3 + s^2 + \beta s + \alpha = 0$

 $1 + \frac{\beta s}{s^3 + s^2 + \alpha} = 0.$

 $s^3 + s^2 + \alpha = 0.$

 $1 + \frac{\alpha}{s^2(s+1)} = 0,$

Root loci as a function of α and β :(a) loci as α varies; (b) loci as β varies for one value of $\alpha = \alpha_1$

- 1. Steady-state error for a ramp input $\leq 35\%$ of input slope
- 2. Damping ratio of dominant roots ≥ 0.707
- 3. Settling time of the system \leq 3 sec

A region in the s-plane for desired root location.

