- Frequency Response
- Bode plots
- Examples

#### **Frequency Response**

 The transfer function can be separated into magnitude and phase angle information

 $\mathbf{H}(j\omega) = |\mathbf{H}(j\omega)| \angle \mathbf{\Phi}(j\omega)$ 



- A **Bode plot** is a (semilog) plot of the transfer function magnitude and phase angle as a function of frequency
- The gain magnitude is many times expressed in terms of decibels (dB)

 $dB = 20 \log_{10} A$ 

where A is the amplitude or gain

- a decade is defined as any 10-to-1 frequency range
- an octave is any 2-to-1 frequency range

20 dB/decade = 6 dB/octave

- Straight-line approximations of the Bode plot may be drawn quickly from knowing the poles and zeros
  - response approaches a minimum near the zeros
  - response approaches a maximum near the poles
- The overall effect of constant, zero and pole terms

| Term         | Magnitude<br>Break | Asymptotic<br>Magnitude Slope | Asymptotic<br>Phase Shift |
|--------------|--------------------|-------------------------------|---------------------------|
| Constant (K) | N/A                | 0                             | 0°                        |
| Zero         | upward             | +20 dB/decade                 | + 90°                     |
| Pole         | downward           | –20 dB/decade                 | – 90°                     |

Express the transfer function in standard form

$$\mathbf{H}(j\omega) = \frac{K(j\omega)^{\pm N} (1+j\omega\tau_1) \left[1+2\varsigma_2(j\omega\tau_2)+(j\omega\tau_2)^2\right] \cdots}{(1+j\omega\tau_a) \left[1+2\varsigma_b(j\omega\tau_b)+(j\omega\tau_b)^2\right] \cdots}$$

- There are four different factors:
  - Constant gain term, K
  - Poles or zeros at the origin,  $(j\omega)^{\pm N}$
  - Poles or zeros of the form (1+  $j\omega\tau$ )
  - Quadratic poles or zeros of the form  $1+2\zeta(j\omega\tau)+(j\omega\tau)^2$

 We can combine the constant gain term (K) and the N pole(s) or zero(s) at the origin such that the magnitude crosses 0 dB at

Pole: 
$$\frac{K}{(j\omega)^{N}} \qquad \omega_{0dB} = K^{1/N}$$
  
Zero: 
$$K(j\omega)^{N} \qquad \omega_{0dB} = (1/K)^{1/N}$$

 Define the *break frequency* to be at ω=1/τ with magnitude at ±3 dB and phase at ±45°

## **Bode Plot Summary**

|                                           | Magnitude Behavior                                                       |                    |                   | Phase Behavior              |                                             |            |  |
|-------------------------------------------|--------------------------------------------------------------------------|--------------------|-------------------|-----------------------------|---------------------------------------------|------------|--|
| Factor                                    | Low<br>Freq                                                              | Break              | Asymptotic        | Low<br>Freq                 | Break                                       | Asymptotic |  |
| Constant                                  | 20 log <sub>10</sub> (K) for all frequencies                             |                    |                   | 0° for all frequencies      |                                             |            |  |
| Poles or<br>zeros at origin               | ±20N dB/decade for all<br>frequencies with a crossover of<br>0 dB at ω=1 |                    |                   | ±90°(N) for all frequencies |                                             |            |  |
| First order<br>(simple) poles<br>or zeros | 0 dB                                                                     | ±3N dB<br>at ω=1/τ | ±20N<br>dB/decade | 0°                          | ±45°(N) with<br>slope ±45°(N)<br>per decade | ±90°(N)    |  |
| Quadratic poles or zeros                  | 0 dB                                                                     | see ζ at<br>ω=1/τ  | ±40N<br>dB/decade | 0°                          | ±90°(N)                                     | ±180°(N)   |  |

where N is the number of roots of value  $\boldsymbol{\tau}$ 

#### Single Pole & Zero Bode Plots



## **Bode Plot Refinements**

- Further refinement of the magnitude characteristic for first order poles and zeros is possible since
  Magnitude at half break frequency: |H(½ω<sub>b</sub>)| = ±1 dB
  Magnitude at break frequency: |H(ω<sub>b</sub>)| = ±3 dB
  Magnitude at twice break frequency: |H(2ω<sub>b</sub>)| = ±7 dB
- Second order poles (and zeros) require that the *damping* ratio (ζ value) be taken into account; see Fig. 9-30 in textbook

# **Bode Plots to Transfer Function**

- We can also take the Bode plot and extract the transfer function from it (although in reality there will be error associated with our extracting information from the graph)
- First, determine the constant gain factor, K
- Next, move from lowest to highest frequency noting the appearance and order of the poles and zeros

#### **Class Examples**

- Drill Problems P9-3, P9-4, P9-5, P9-6 (hand-drawn Bode plots)
- Determine the system transfer function, given the Bode magnitude plot below

