
Frequency Response Methods 

and Stability 

 In previous chapters we examined the use of test signals such as a step and a ramp 

signal. In this chapter we consider the steady-state response of a system to a sinusoidal 

input test signal. We will see that the response of a linear constant coefficient system to 

a sinusoidal input signal is an output sinusoidal signal at the same frequency as the 

input. However, the magnitude and phase of the output signal differ from those of the 

input sinusoidal signal, and the amount of difference is a function of the input 

frequency. Thus we will be investigating the steady-state response of the system to a 

sinusoidal input as the frequency varies.  

 

We will examine the transfer function G(s) when s =jw and develop methods for 

graphically displaying the complex number G(j)as w  varies. The Bode plot is one of the 

most powerful graphical tools for analyzing and designing control systems, and we will 

cover that subject in this chapter. We will also consider polar plots and log magnitude 

and phase diagrams. We will develop several time-domain performance measures in 

terms of the frequency response of the system as well as introduce the concept of system 

bandwidth. 



Introduction 

The frequency response of a system is defined as the steady-state 

response of the system to a sinusoidal input signal.  The sinusoid 

is a unique input signal, and the resulting output signal for a linear 

system, as well as signals throughout the system, is sinusoidal in 

the steady-state; it differs form the input waveform only in 

amplitude and phase. 
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Assume that the system has dominant second-order roots
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