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Gain and Phase Margin "2 K G(s)

Let's say that we have the following system:

where K is a variable (constant) gain and G(s) 1s the plant under consideration.

The gain margin is defined as the change in open loop gain required to make the
system unstable. Systems with greater gain margins can withstand greater changes in
system parameters before becoming unstable in closed loop. Keep in mind that unity
gain in magnitude is equal to a gain of zero in dB.

The phase margin is defined as the change in open loop phase shift required to make
a closed loop system unstable.

The phase margin is the difference in phase between the phase curve and -180 deg at
the point corresponding to the frequency that gives us a gain of 0dB (the gain cross
over frequency, Wgc).

Likewise, the gain margin is the difference between the magnitude curve and 0dB at
the point corresponding to the frequency that gives us a phase of -180 deg (the phase
cross over frequency, Wpc).
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Gain and Phase Margin

We can find the gain and phase margins for a system directly, by using MATLAB.

Just enter the margin command.

This command returns the gain Gm=1320 OB, (w= 5477) Pm=1007 deg. (v=1.843

and phase margins, the gain and 100 - _ .

phase cross over frequencies, and

a graphical representation of these @
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Gain and Phase Margin

M agnitude:
db(G,co) = 20-10g( |G(j-oo)|)
Phase shift:
ps(G.0) = 2 arg(Gj-0)) - 360-(iflarg(G(j-0)) = 0.1,0))
T
Assume
K:=2 G(s) = K

Next, choose a frequency rangefor the plots (use powers of 10 for convenient plotting):

lowest frequency (in Hz): Ogqart = -01  number of points: N := 50
highest frequency (in Hz): ®end = 100
: Ogtart | 1
step size: r:=lo —
®Wend ) N
range for plot: 1:=0..N

range variable: ®j = (Dend-lOl'lr Sj == ]-0j



Gain and Phase Margin

Guess forcrossover frequency: o =1
Solve for the gain crossover frequency:

W, = root(db(G,ooC),o)C) o, = 1.193

Calculate thephase margin

pm = ps(G,(oC) + 180 pm= 18.265 degrees

Gain Margin

Now usingthe phase angle plot, estimate the frequency at which the phase shift crosses 180 degr
®om = 1.8

Solve for at the phase shift point of 180 degrees:
Oom = root(ps(G , cogm) + 180, oagm)
®om = 1.732

Calculate thegain margin

gm:= —db(G,04ym)  gm= 6.021



The Nyquist Stability Criterion

The Nyquist plot allows us also to predict the stability and performance of a closed-loop system by
observing its open-loop behavior. The Nyquist criterion can be used for design purposes regardless of open-
loop stability (Bode design methods assume that the system is stable in open loop). Therefore, we use this
criterion to determine closed-loop stability when the Bode plots display confusing information.

The Nyquist diagram is basically a plot of G(j* w) where G(s) is the open-loop transfer function and w is a
vector of frequencies which encloses the entire right-half plane. In drawing the Nyquist diagram, both
positive and negative frequencies (from zero to infinity) are taken into account. In the illustration below we
represent positive frequencies in red and negative frequencies in green. The frequency vector used in plotting
the Nyquist diagram usually looks like this (if you can imagine the plot stretching out to infinity):

However, if we have open-loop poles or zeros on the jw axis, G(s) will not be defined at those points, and we
must loop around them when we are plotting the contour. Such a contour would look as follows:

jw-axis jw-axis
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Infinity

Real AXis Peal Axis




The Cauchy criterion

The Cauchy criterion (from complex analysis) states that when taking a closed contour in
the complex plane, and mapping it through a complex function G(s), the number of times
that the plot of G(s) encircles the origin is equal to the number of zeros of G(s) enclosed
by the frequency contour minus the number of poles of G(s) enclosed by the frequency
contour. Encirclements of the origin are counted as positive if they are in the same
direction as the original closed contour or negative if they are in the opposite direction.

When studying feedback controls, we are not as interested in G(s) as in the closed-loop
transfer function:

1 + G(s)
If 1+ G(s) encircles the origin, then G(s) will enclose the point -1.
Since we are interested in the closed-loop stability, we want to know if there are any
closed-loop poles (zeros of 1 + G(s)) in the right-half plane.

Therefore, the behavior of the Nyquist diagram around the -1 point in the real axis is very
important; however, the axis on the standard nyqui st diagram might make it hard to see

what's happening around this point



Gain and Phase Margin

Gain Margin 1s defined as the change in open-loop gain expressed in decibels (dB), required at 180
degrees of phase shift to make the system unstable. First of all, let's say that we have a system that
is stable if there are no Nyquist encirclements of -1, such as :

50

s"3+9s"2+30s+40

Looking at the roots, we find that we have no open loop poles in the right half plane and therefore no
closed-loop poles in the right half plane if there are no Nyquist encirclements of -1. Now, how much
can we vary the gain before this system becomes unstable in closed loop?

The open-loop system represented by this plot will become unstable in closed loop if the gain is
increased past a certain boundary.
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The Nyquist Stability Criterion

and that the Nyquist diagram can be viewed by typing:
nyquist (50, [1 9 3040 ])
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Gain and Phase Margin

Phase margin as the change in open-loop phase shift required at unity gain to make a closed-
loop system unstable.

From our previous example we know that this particular system will be unstable in closed
loop if the Nyquist diagram encircles the -1 point. However, we must also realize that if the
diagram 1s shifted by theta degrees, it will then touch the -1 point at the negative real axis,
making the system marginally stable in closed loop. Therefore, the angle required to make
this system marginally stable in closed loop is called the phase margin (measured in
degrees). In order to find the point we measure this angle from, we draw a circle with radius
of 1, find the point in the Nyquist diagram with a magnitude of 1 (gain of zero dB), and
measure the phase shift needed for this point to be at an angle of 180 deg.
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The Nyquist Stability Criterion

w :=-100,-99.9..100 ji=1/-1
50-4.6

(W) = 3 2
s(w)  + 9-s(w) + 30s(w) + 40

s(w) =) w

f(w) :=-1

5 | | !

Im(G(w))




Consider the Negative Feedback System

Remember from the Cauchy criterion that the number N of times that the plot of G(s)H(s) encircles -1 is
equal to the number Z of zeros of 1 + G(s)H(s) enclosed by the frequency contour minus the number P of
poles of 1 + G(s)H(s) enclosed by the frequency contour (N = Z - P).

Keeping careful track of open- and closed-loop transfer functions, as well as numerators and
denominators, you should convince yourself that:

o the zeros of 1 + G(s)H(s) are the poles of the closed-loop transfer function

o the poles of 1 + G(s)H(s) are the poles of the open-loop transfer function.

Plant

The Nyquist criterion then states that:

—»E— G -
o P = the number of open-loop (unstable) poles of G(s)H(s) T— —
o N = the number of times the Nyquist diagram encircles -1 His]
o clockwise encirclements of -1 count as positive encirclements
. counter-clockwise (or anti-clockwise) encirclements of -1 count as negative encirclements

. Z = the number of right half-plane (positive, real) poles of the closed-loop system

The important equation which relates these three quantities is:

Z =P + N



The Nyquist Stability Criterion - Application

Knowing the number of right-half plane (unstable) poles in open loop (P), and the
number of encirclements of -1 made by the Nyquist diagram (N), we can determine
the closed-loop stability of the system.

If Z =P + N is a positive, nonzero number, the closed-loop system is unstable.

We can also use the Nyquist diagram to find the range of gains for a closed-loop unity
feedback system to be stable. The system we will test looks like this:

EEAT Flank
— K[| a o

where G(s) 1s :
s™2 + 10 s + 24

s”2 - 8 s + 15



The Nyquist Stability Criterion

This system has a gain K which can be varied in order to modify the response of the closed-loop
system. However, we will see that we can only vary this gain within certain limits, since we have to
make sure that our closed-loop system will be stable. This is what we will be looking for: the range
of gains that will make this system stable in the closed loop.

The first thing we need to do is find the number of positive real poles in our open-loop transfer
function:

roots([1 -8 15])

ans =

5

3
The poles of the open-loop transfer function are both positive. Therefore, we need two anti-
clockwise (N = -2) encirclements of the Nyquist diagram in order to have a stable closed-loop
system (Z = P + N). If the number of encirclements is less than two or the encirclements are not
anti-clockwise, our system will be unstable.

Let's look at our Nyquist diagram for a gain of 1:

nyquist([ 1 10 24],[ 1 -8 15])

lag Axis

There are two anti-clockwise encirclements of -1.
Therefore, the system is stable for a gain of 1.




The Nyquist Stability Criterion

MathCAD Implementation

s(W) :=jw

w :=-100,-99.9..100 ji=qf-1
s(W)2 + 10s(w) + 24
G(w) := >
s(w) —8s(w)+ 15
2 | |
o "
Im(G(w)) [
0 0 \ T
..... \::%_\_—_______._,—r'
- | |
-2 -1 0

Re(G(w))

There are two anti-
clockwise encirclements of -
1.

Therefore, the system 1is
stable for a gain of 1.



The Nyquist Stability Criterion

==NUM=[0.5]; den=[1210.5];
==gys=tfinum,den);
s>y guistisys)

1.0
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Time-Domain Performance Criteria Specified
In The Frequency Domain

Constant M circles.
Open and closed-loop frequency responses are related by : M=1
M=15 M=07
T(jco) = G(joa) M=2 M =05
1+ G(joa)
1 -1 0 g
Mpw = C < 0.707
2.@..,/ 1 — CZ
G((;)) =u+ j-v M = M(co) S
G(jco) u+ jv : u2+V2
M(Q)) = - = - =
1—|—G(JQ)) 1+u—|—_]V

-\/(1 +u)2+v2

Squaring and rearrenging

5 v = center at

5 which is the equation of a
M2 2 M 2 circle on u-v planwe with a
u— +

1-M




Time-Domain Performance Criteria Specified
In The Frequency Domain
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The Nichols Stability Method

Polar S tability Plot - NicholMathcad Implementation

This examp le makes apolar plot of a transfer function and draws one contour of constant
closed-loop magnitude. To draw the plot, enter a definition for the transfer fun@GiEy

45000
s:(s+ 2)-(s+ 30)

The frequency range defined by the next two equations provides a logarithmic frequency scalc
running from 1 to 100. You can change this range by editing the definitionsnfend o _:

G(s) =

m==0. 100 o = 100%™

Now enter a value fotM to define the closed-loop magnitude contour that will be plotted.
M= 1.1
Calculate the points on the M -circle:

M -1

M -eXp(Z-n -j-.Ol-m)

M — 1

The first plot shows, the contour of constant closed-loop magnitud¥l



The Nichols Stability Method

The first plot show&, the contour of constant closed-loop magnitud¥l, and the
Nyquist of the open loop system

Im(G(j oom)) \
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Re(G(j-om)), Re(MGy), - 1



The Nichols Stability Method

Laap guin &, in decibels

Looop phase, 2 07 in degraecs

Nichols chart. The phase curves for the closed-loop system are shown in color.
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The Nichols Stability Method

1
jo-(Go+1)(02j0+ 1)

G(oa) =

Mpw =2.5 dB o, = 0.8

The closed-loop phase angle

at or 1s equal to -72 degrees andwb = 1.33
The closed-loop phase angle atob is equal tc

-142 degrees

Loop gain (5, in decibels

Nichols diagram for G(jw) = jw( jo + 1)(0.2jw + 1). Three poi
on curve are shown for e = 0.5, 0.8, and 1.35. respectivety.
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The Nichols Stability Method
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. i
Magnitude of - = — 18 dB
- | + s
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the frequency-domain-time-domain correlation
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The Nichols Stability Method
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Examples — Bode and Nyquist

+ 0.5
o >
g 4+ 254+ 5 4+ (0.5

A closed-loop control system example for
Nyquist and Bode with relative stability.



Examples - Bode + 0.5

34+ 252+ 54+ 0.5

[mad, phase wi=hbode{sys); ar [Grm, PmWeg, Wepl=marding sys);
[Gm, Pm, Weog Wepl=margin{mag, phass wi;

rIﬂl
o I I LN I I | R
i - (iain margin
o -50 Wep
1 1 1 1 L1l 1 1 1 11111
101 10 10
Example Frequancy (rad'sec)
num=[0.5]; den=[1 21 C.5];
I LI I I I TTrrirj

sys=tf{ num,den);

marginisys); Phase margin

.
- [ ] —
U

Fhase deg

Wep

Gm = gain margin (dB) — N, o
Pm = phase margin (deg) 10 100 101
Weg = freq. for phase = — 180 ) ' '

Wep = freq. for gain = 0 dB

Frequency (rad'sec)



Examples - Bode

Gm = 9.5424 ¢lB (at 1 rad/sec) Pm = 42.94 deq. (at 0.64359 rad/sec)
:;_"':' T T T T 1T TT1TT T T 1T T T TT

(ain margin

20k
_4I:I

A0 F

Magnitude (dE)

-an 1 1 I T [ | 1 1 L1 1111
1071 100 101
Frequency (rad/sec)

107 100 10!
Frequency (rad/sec)

num=[0.5]; Open-loop system
den=[12105];

sys=tfinum,den);

Yo Specify frequency range
w=logspace(-1,1,200);

[mag,phase w]=bods{sys,w);

margin{mag,phase,w);



Examples — Bode and Nyquist

Magnituds [dB)

F hazs ideg)

=100

-200

=300

iZm = 95424 dB {at 1 rad’s=c) Pm = 48.54 deq. (at 0.64358 rad’ssc)

2':' T T T T 1T 11 T T T T T T 177

(i}
20
a0 b

60 |

(iain margin

-Bl:l 1 | I I N A T | | | I I N A |

1o 10F
Frequency { md/zac)

10! 1"
Frequency (mdizec)

rum=[0.5]; Cpen-loop system
den=[1210.5];
sys=1f{num cen};

% Specily frequency range
wi=logspacs(-1,1,200);

S

[mag,phazswl=bods{sy= wi;

S

marginimag,phasewl;

Imaginary Axis

Gm =3.0127, Pm =49.2854

G 1
M= nEEE

]

Pm = 49 28

%
num={0.5]; den=[1 2 1 0.5} sys={finum,d&n);

-08 OH6 04 02 O 02 04 08 08
Rezal Axis

% The Myquist plot of
kA
L 05
t Gis) = £ 405" 4+ 5405 Compule gain ancd
[ o phuse margins.
% with gain and phase margin calculation.

[i'nag.pha.se.'.!.']=b-:-de-:53-'5]:

[Gm,Pm, e Wepl=marginimag, phass w];
kS Mzt ploi
nyquistisys);

tide([Gm =" num2strigm),’ Frm =" num2str{Frm]])

Labezl gain and phase
margins on plok,

1




Examples - Nichols
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User-supplicd frequency

(¥ = 8y8 e :
4 foptional)

[mag phase, w]=nichols(sys, w)



Examples - Nichols
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Cpen-Loop Phass (deg)

Set up to generale
num=[1]; den=[0.2 1.2107; Fig.0.27
sya=tf{num dan};
wi=lcgspace(-1,1 4005,
nicholk{=ys w); Plot Nichaols chart
nigricl and add grid lines.



