DESIGN OF CLOSED LOOP SYSTEMS USING COMPENSATION TECHNIQUES IN TIME DOMAIN

Lecture Outline

- Introduction to Lead Compensation
- Electronic Lead Compensator
- Electrical Lead Compensator
- Mechanical Lead Compensator

Lead Compensation

- Lead Compensation essentially yields an appreciable improvement in transient response and a small change in steady state accuracy.
- There are many ways to realize lead compensators and lag compensators, such as electronic networks using operational amplifiers, electrical *RC* networks, and mechanical spring-dashpot systems.

Lead Compensation

• Generally Lead compensators are represented by following transfer function

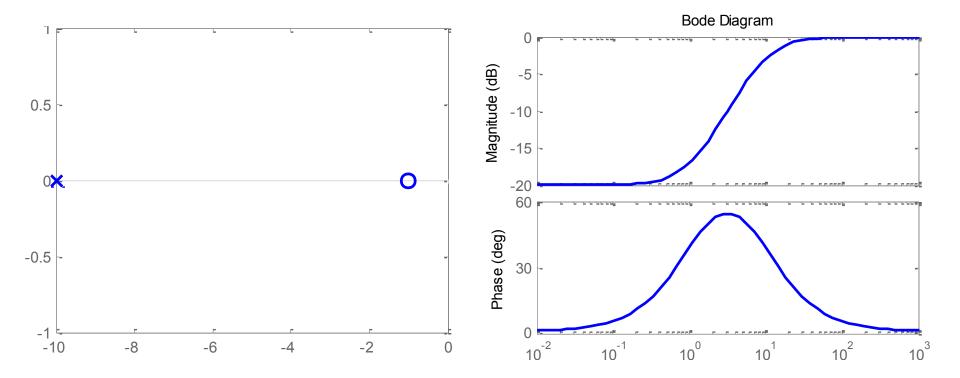
$$G_c(s) = K_c \alpha \frac{Ts+1}{\alpha Ts+1}, \quad (0 < \alpha < 1)$$

• or

$$G_c(s) = K_c \frac{s + \frac{1}{T}}{s + \frac{1}{\alpha T}}, \quad (0 < \alpha < 1)$$

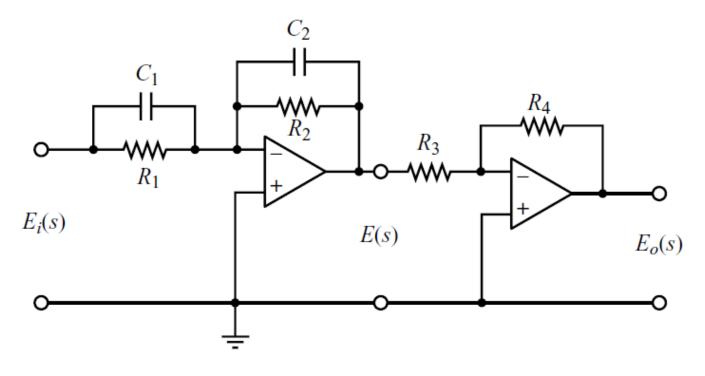
Lead Compensation

$$G_c(s) = 3 \frac{s+1}{s+10}, \quad (\alpha = 0.1)$$



Electronic Lead Compensator

Following figure shows an electronic lead compensator using operational amplifiers.



 $\frac{E_o(s)}{E_i(s)} = \frac{R_2 R_4}{R_1 R_3} \frac{R_1 C_1 s + 1}{R_2 C_2 s + 1}$

Electronic Lead Compensator

$$\frac{E_o(s)}{E_i(s)} = \frac{R_2 R_4}{R_1 R_3} \frac{R_1 C_1 s + 1}{R_2 C_2 s + 1}$$

• This can be represented as

$$\frac{E_o(s)}{E_i(s)} = \frac{R_4 C_1}{R_3 C_2} \frac{s + \frac{1}{R_1 C_1}}{s + \frac{1}{R_2 C_2}}$$

4

$$T = R_1 C_1$$
 $aT = R_2 C_2$ $K_c = \frac{R_4 C_1}{R_3 C_2}$

• Then,

Where,

$$G_c(s) = K_c \frac{s + \frac{1}{T}}{s + \frac{1}{\alpha T}}, \quad (0 < \alpha < 1)$$

1

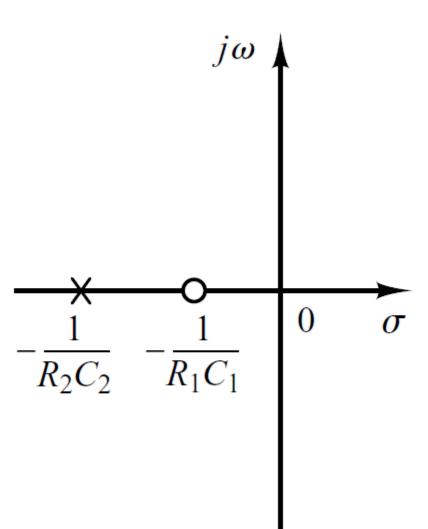
• Notice that

 $R_1C_1 > R_2C_2$

Electronic Lead Compensator

• Pole-zero Configuration of Lead Compensator

 $R_1C_1 > R_2C_2$



Lead Compensation Techniques Based on the Root-Locus Approach.

- The root-locus approach to design is very powerful when the specifications are given in terms of time-domain quantities, such as
 - damping ratio
 - undamped natural frequency
 - desired dominant closed-loop poles
 - maximum overshoot
 - rise time
 - settling time.

Lead Compensation Techniques Based on the Root-Locus Approach.

• The procedures for designing a lead compensator by the root-locus method may be stated as follows:

- **Step-1:** Analyze the given system via root locus.

• From the performance specifications, determine the desired location for the dominant closed-loop poles.

- From the root-locus plot of the uncompensated system (original system), ascertain whether or not the gain adjustment alone can yield the desired closed loop poles.
- If not, calculate the angle deficiency.
- This angle must be contributed by the lead compensator if the new root locus is to pass through the desired locations for the dominant closed-loop poles.

• Assume the Lead Compensator to be:

$$G_c(s) = K_c \alpha \frac{Ts+1}{\alpha Ts+1} = K_c \frac{s+\frac{1}{T}}{s+\frac{1}{\alpha T}}, \qquad (0 < \alpha < 1)$$

- Where α and T are determined from the angle deficiency.
- K_c is determined from the requirement of the open-loop gain.

- If static error constants are not specified, determine the location of the pole and zero of the lead compensator so that the lead compensator will contribute the necessary angle.
- If no other requirements are imposed on the system, try to make the value of α as large as possible.
- A larger value of α generally results in a larger value of $K_{\!\nu}$ which is desirable.
- Larger value of α will produce a larger value of K_v and in most cases, the larger the K_v is, the better the system performance.

Determine the value of K_c of the lead compensator from the magnitude condition.

Final Design check

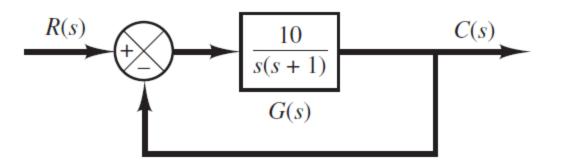
- Once a compensator has been designed, check to see whether all performance specifications have been met.
- If the compensated system does not meet the performance specifications, then repeat the design procedure by adjusting the compensator pole and zero until all such specifications are met.

Final Design check

 If the selected dominant closed-loop poles are not really dominant, or if the selected dominant closed-loop poles do not yield the desired result, it will be necessary to modify the location of the pair of such selected dominant closed-loop poles.

Example-1

Consider the position control system shown in following figure.



It is desired to design an Electronic lead compensator G_c(s) so that the dominant closed poles have the damping ratio
0.5 and undamped natural frequency 3 rad/sec.

Step-1 (Example-1)

• Draw the root Locus plot of the given system.

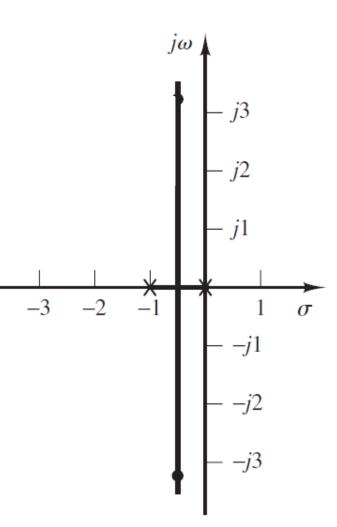
$$G(s)H(s) = \frac{10}{s(s+1)}$$

• The closed loop transfer function of the given system is:

$$\frac{C(s)}{R(s)} = \frac{10}{s^2 + s + 10}$$

The closed loop poles are

 $s = -0.5 \pm j3.1225$

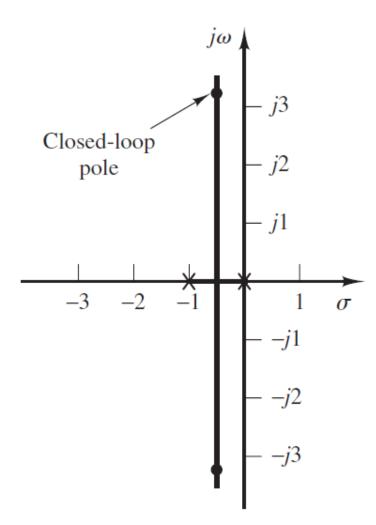


Step-1 (Example-1)

• Determine the characteristics of given system using root loci.

$$\frac{C(s)}{R(s)} = \frac{10}{s^2 + s + 10}$$

- The damping ratio of the closed-loop poles is 0.158.
- The undamped natural frequency of the closed-loop poles is 3.1623 rad/sec.
- Because the damping ratio is small, this system will have a large overshoot in the step response and is not desirable.



Step-2 (Example-1)

- From the performance specifications, determine the desired location for the dominant closed-loop poles.
- Desired performance Specifications are:
 - It is desired to have damping ratio 0.5 and undamped natural frequency 3 rad/sec.

$$\frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{9}{s^2 + 3s + 9}$$

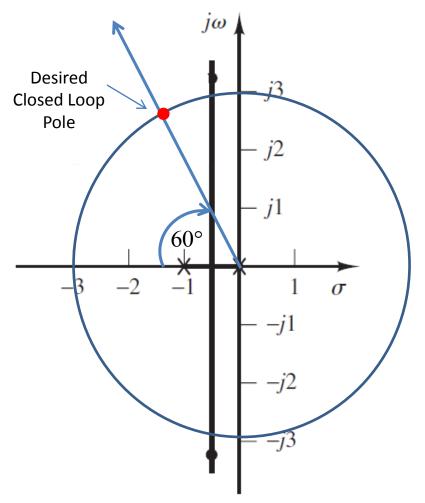
 $s = -1.5 \pm j2.5981$

Step-2 (Example-1)

- Alternatively desired location of closed loop poles can also be determined graphically
 - Desired $\omega_n = 3 \text{ rad/sec}$
 - Desired damping ratio= 0.5

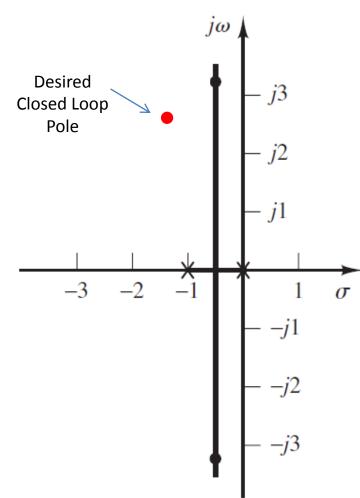
$$\theta = \cos^{-1} \zeta$$

$$\theta = \cos^{-1}(0.5) = 60^{\circ}$$



Step-3 (Exampl-1)

 From the root-locus plot of the uncompensated system ascertain whether or not the gain adjustment alone can yield the desired closed loop poles.

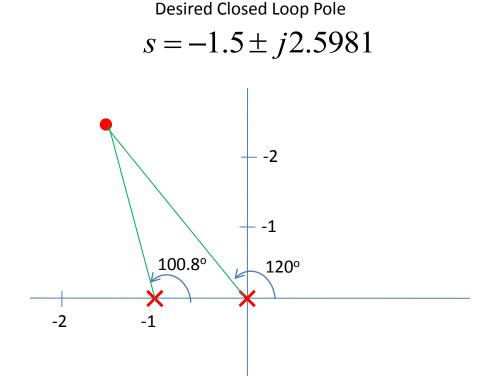


Step-3 (Exampl-1)

- If not, calculate the angle deficiency.
- To calculate the angle of deficiency apply Angle Condition at desired closed loop pole.

$$\theta_d = 180^\circ - 120^\circ - 100.8^\circ$$

 $\theta_d = -40.89^\circ$



Step-3 (Exampl-1)

• Alternatively angle of deficiency can be calculated as.

$$\theta_d = 180^\circ + \angle \frac{10}{s(s+1)} \Big|_{s=-1.5+j2.5981}$$

Where $s = -1.5 \pm j2.5981$ are desired closed loop poles

$$\theta_d = 180^\circ + \angle 10 - \angle s \Big|_{s=-1.5+j2.5981} - \angle (s+1) \Big|_{s=-1.5+j2.5981}$$

$$\theta_d = 180^\circ - 120^\circ - 100.8^\circ$$

$$\theta_d = -40.89^\circ$$

Step-4 (Exampl-1)

 This angle must be contributed by the lead compensator if the new root locus is to pass through the desired locations for the dominant closed-loop poles.

$$G_c(s) = K_c \alpha \frac{Ts+1}{\alpha Ts+1} = K_c \frac{s+\frac{1}{T}}{s+\frac{1}{\alpha T}}, \qquad (0 < \alpha < 1)$$

 Note that the solution to such a problem is not unique. There are infinitely many solutions.

Step-5 (Exampl-1)

Solution-1

Solution-1

- If we choose the zero of the lead compensator at s = -1 so that it will cancel the plant pole at s = -1, then the compensator pole must be located at s = -3.

