Step-s (Example-l) Solution-1

e If static error constants are not specified, determine the
location of the pole and zero of the lead compensator so that
the lead compensator will contribute the necessary angle.
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Step-5 (Example-1)

* The pole and zero of compensator are determined as
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Step-6 (Example-1)

* The Value of K. can be
determined using magnitude

closed-loop pole

Solution-1
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Solution-1

Final Design Check

* The open loop transfer function of the designed system
then becomes

Gc(s)G(s) = (s 1 3)

* The closed loop transfer function of compensated
system becomes.

C(s) _ 9
R(s) s2+3s+09




Final Design Check
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Solution-1

Final Design Check

* The static velocity error constant for original system is
obtained as follows.

K, = limsG(s)

s—0

K, = 9 =10
v 0 [ss+ )|

* The steady state error is then calculated as
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Solution-1

Final Design Check

 The static velocity error constant for the compensated
system can be calculated as

K, = ll_l;% sG.(s)G(S)

9
K, =lims =3
Y s-0 [S(S + 3)]
* The steady state error is then calculated as
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Ste p-5 (Examp|_1) Solution-2

 Solution-2




Ste p-5 (Examp|_1) Solution-2

e Solution-2

s+ 1.5
s+ 3.6

G.(s) = 1.03




Step-5 (Example-1) Solution-3

If no other requirements are imposed on the system, try to make
the value of a as large as possible. A larger value of a generally
results in a larger value of K, which is desirable.

Procedure to obtain a largest possible value for a.

— First, draw a horizontal line passing through point P, the desired location for
one of the dominant closed-loop poles. This is shown as line PA in following
figure.

— Draw also a line connecting point P and the origin O.




Step-5 (Example-1) Solution-3

* Bisect the angle between the lines PA and PO, as shown in following
figure.




Step-5 (Example-1) Solution-3

* Draw two lines PC and PD that make angles i%with the the
bisector PB.

* The intersections of PC and PD with the negative real axis give the
necessary locations for the pole and zero of the lead network.




* The lead compensator has zero at s=—1.9432 and pole at s=—4.6458.

Step-5 (Example-1)

B
* Thus, G(s)

can be given as

G.(s) = K,
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Step-5 (Example-1) Solution-3

1

S+= $+1.9432

Gc(s) =K. —=K,
(44

* For this compensator value of « is

1 yields
T 1.9432 >T = 0.514

* Also

1 yields
v 4.6458 —— a = 0.418



Step-6 (Example_l) Solution-3

* Determine the value of K_ of the lead compensator from
the magnitude condition.

—-—% Gi.(ﬁ] I
s(s+1)

G(s)

10K, (s + 1.9432)

GIGCIHE) = S5 T 4.6458)

10K, (s + 1.9432)

s(s + 1)(s + 4.6458)|_ =1

=—1.5+4j2.5981




Step-6 (Example_l) Solution-3

* The K_is calculated as

K, = 1.2287

* Hence, the lead compensator G_(s) just designed is given
by

s + 1.9432

= 1.22
Ge(s) 87 126458




Solution-3

Final Desigh Check
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Final Design Check solution-3

It is worthwhile to check the static velocity error
constant K, for the system just designed.

K, = ll_r)% sG.(s)G(s)

K, = lims|1.22875 7 2243210 | _ 139
v |4 s ¥ 464585+ D) T
e Steady state error is
e. =L =_1 _0194

SS K, 5.139
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Mechanical Lead Compensator

Figure shows the mechanical lead compensator.
Equations are obtained as

bZ(xi o xa) — b'l(io o y)
bi(x, — 3) = ky
Taking Laplace transform of these equatior

assuming zero initial conditions and eliminatir

Y(s), we obtain
b
X() b k!
X(s) b, +b, b b

s + 1

by l
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Mechanical Lead Compensator

b
XO(S) _ b2 k >
X[(S) b'l + b2 b2 bl ¢ 41
* By defining
b b,
k b+ b,
* We obtain




Exampl-2

* Design a mechanical lead compensator for following system.

R(s) 4 C(s)
s(s+2)

(Gi(s)

* The damping ratio of closed loop poles is 0.5 and natural
undamped frequency 2 rad/sec. It is desired to modify the

closed loop poles so that natural undamped frequency
becomes 4 rad/sec without changing the damping ratio.



Electrical Lead Compensator
1

A~

Vi(s) R2 V()

VO(S) _ Rz R1CS +1
V.(s) " R{+R, RiR,
i\"J¢ R, + R, Cs+1
T =R,C aT Ry RpC R,




Example-3

* Consider the model of space vehicle control system
depicted in following figure.

R(s) C(s)

GC(S) #— —2

Lead Space
compensator vehicle

1
0.1s + 1

Sensor

 Design an Electrical lead compensator such that the
damping ratio and natural undamped frequency of
dominant closed loop poles are 0.5 and 2 rad/sec.



