
Chapter 9 

  Design via Root LocusDesign via Root Locus 



Figure 9.1 

a. Sample root locus, 

showing possible 

design point  via 

gain adjustment (A) 

and desired design 

point that cannot be 

met via simple gain 

adjustment (B); 

b. responses from 

poles at A and B 

 

Improving transient response 



Compensation 

techniques: 

a. cascade; 

b. feedback 

 

 
Ideal compensators are 

implemented with active 

networks. 

 

Improving steady-state error 



Pole at A is: 

a. on the root 

locus without 

compensator; 

b. not on the 

root locus with 

compensator 

pole added; 

(figure continues) 

Improving steady-state error via cascade compensation 



c. approximately 

on the root locus 

with compensator 

pole and zero 

added 

Ideal Integral compensation (PI) 



Closed-loop system for Example 9.1 

 

a. before compensation; 

b. after ideal integral compensation 

Problem: The given system 

operating with damping ratio 

of 0.174. Add an ideal integral 

compensator to reduce the ss 

error. 

Solution: 

We compensate the system by 

choosing a pole at the origin 

and a zero at -0.1 



Root locus for uncompensated 

system of Figure 9.4(a) 

The gain K = 164.6 

yields Kp  = 8.23 and  
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Root locus for compensated system of Figure 9.4(b) 

Almost same 

transient response 

and gain, but with 

zero ss error since 

we have a type one 

system. 



Ideal integral compensated  system response and the 

uncompensated system response of Example 9.1 



PI controller 

A method to implement an Ideal integral compensator is shown. 

2
1

2 1
1

( )

( )c

K
K s

K K
G s K

s s



  



 

    Lag Compensator 

 

a. Type 1 uncompensated system; 

b. Type 1 compensated system; 

c. compensator pole-zero plot 

Using passive networks, the 

compensation pole and zero is 

moved to the left, close to the 

origin. 

The static error constant for 

uncompensated system is 

 

 

Assuming the compensator is 

used as in b & c the static error is  
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Root locus: 

a. before lag compensation; 

b. after lag compensation 

Effect on transient response 

Almost no change on the transient response and same gain K. While 

the ss error is effected since  c
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Lag compensator design  Example 9.2 

Problem: Compensate the shown system to improve the ss error by a 

factor of 10 if the system is operating with a damping ratio of 0.174 

Solution: the uncompensated system error from previous example is 

0.108 with Kp= 8.23. a ten fold improvement means ss error = 

0.0108 so Kp= 91.59. so the ratio                                     arbitrarily  

selecting Pc=0.01 and Zc=11.13Pc    0.111 
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Root locus for compensated system 



Predicted characteristics of uncompensated and lag-compensated 

systems for Example 9.2 



Step responses of uncompensated and 

lag-compensated systems for 

Example 9.2 



Step responses of the system for Example 9.2 

using different lag compensators 



Ideal Derivative compensator is called PD controller  

When using passive network it’s called lead compensator 
Using ideal derivative compensation: 

 a. uncompensated; 

b. compensator zero at –2; 

Improving Transient response via Cascade Compensation 
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c. Compensator zero at –3; 

d. Compensator zero at – 4 

Improving Transient response via Cascade Compensation 



Uncompensated system and ideal derivative 

compensation solutions from Table 9.2 



Table 9.2 Predicted characteristics for the systems of previous slides 



Feedback control system for Example 9.3 

Problem: Given the system in the figure, design an ideal derivative 

compensator to yield a 16% overshoot with a threefold reduction in settling time.  

Root locus for 

uncompensated system 

of Example 9.3 



Compensated dominant pole superimposed over the  

 

uncompensated root locus for Example 9.3 

The settling time for the uncompensated 

system shown in next slide is                                       

In order to have a threefold reduction in 

the settling time, the settling time of the 

compensated system will be one third of 

3.32 that is 1.107, so the real part of the 

compensated system’s dominant second 

order pole is 

And the imaginary part is 

 

The figure shows the designed dominant 

2nd order poles.   
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Evaluating the location of the compensating zero for Example 9.3 

The sum of angles from all poles to 

the desired compensated  pole -

3.613+j6.193 is -275.6 

The angle of the zero to be on the 

root locus is 275.6-180=95.6 

The location of the compensator 

zero is calculated as  
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Uncompensated and compensated system characteristics for Example 9.3 



Root locus for the compensated system of Example 9.3 



Uncompensated and compensated system step responses of Example 9.3 



PD controller implementation 
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K2 is chosen to contribute to the required loop-gain value. And K1/K2 is 

chosen to equal the negative of the compensator zero. 



Geometry of lead compensation 

Advantages of a passive lead network over an active PD controller:  

1) no need for additional power supply  

2) noise due to differentiation is reduced 
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Three of the infinite 

possible lead 

compensator solutions 



Lead compensator design, Example 9.4 

Problem: Design 3 lead 

compensators for the system in 

figure that will reduce the settling 

time by a factor of 2 while 

maintaining 30% overshoot. 

Solution: The uncompensated 

settling time is 

To find the design point, new 

settling time is 

From which the real part of the 

desired pole location is 

And the imaginary part is     
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