
S-plane picture used to calculate the location of the compensator pole for Example 9.4 

Arbitrarily assume a compensator zero 

at -5 on the real axis as possible 

solution. Then we find the compensator 

pole location as shown in figure. 

Note sum of angles of compensator zero 

and all uncompensated poles and zeros 

is -172,69 so the angular contribution of 

the compensator pole is -7.31. 
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Compensated system root locus 



Comparison of lead compensation designs for Example 9.4 



Uncompensated system and lead compensation 

responses for Example 9.4 



PID controller or using passive network it’s called lag-lad compensator 

Improving Steady-State Error and Transient Response  
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Design Steps: 

 Evaluate the performance of the uncompensated system to determine 

how much improvement is required in transient response 

 Design the PD controller to meet the transient response 

specifications. The design includes the zero location and the loop 

gain. 

 Simulate the system to be sure all requirements have been met. 

 Redesign if the simulation shows that requirements have not been 

met. 

 Design the PI controller to yield the required steady-sate error. 

 Determine the gains, K1, K2, and K3 shown in previous figure. 

 Simulate the system to be sure all requirements have been met. 

 Redesign if simulation shows that requirements have not been met. 

PID controller design 



PID controller design Example 9.5 

Problem: Using the system in the Figure, Design a PID controller so that 

the system can operate with a peak time that is 2/3 that of the 

uncompensated system at 20% overshoot and with zero steady-state error 

for a step input 

 

 

 

 

 

Solution: The uncompensated system operating at 20% overshoot has 

dominant poles at -5.415+j10.57 with gain 121.5, and a third pole at -

8.169. The complete performance is shown in next table. 



Root locus for the uncompensated system of Example 9.5 

To compensate the system to 

reduce the peak time to 2/3 of 

original, we must find  the 

compensated system dominant 

pole location. The imaginary 

part of the dominant pole is 

 

 

Thus the real part is  
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Predicted characteristics of uncompensated, PD- , and PID- 

compensated systems of Example 9.5 



Calculating the PD compensator zero for Example 9.5 

To design the compensator, we find the 

sum of angles from the uncompensated 

system’s poles and zeros to the desired 

compensated dominant pole to be -

198.37. Thus the contribution required 

from the compensator zero is 198.37-

180=18.37. Then we calculate the 

location of the zero as: 

 

 

Thus the PD controller is GPD(s) = 

(s+55.92) 

The complete root locus sketch is shown 

in next slide. Using program the gain at 

the design point is 5.34 
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Root locus for PD-compensated system of Example 9.5 



Step responses for uncompensated, PD-compensated,  and PID-

compensated systems of Example 9.5 



Root locus for PID-compensated system of Example 9.5 

Choosing the ideal integral compensator to be  
0.5
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And sketching the root locus for 

the PID-compensated system as 

shown. Searching the 0.456 

damping ratio line, we find the 

dominant poles at -7.516+j14.67 

The characteristics of the PID 

compensated system are shown in 

table. 



Predicted characteristics of uncompensated, PD- , and PID- 

compensated systems of Example 9.5 



Finally to implement the compensator and find the K’s, using the PD 

and PI compensators 

 

 

and compare to 

 

 

 

we find K1= 259.5, K2=128.6, and K3=4.6 

Improving Steady-State Error and Transient Response  
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Lag-Lead Compensator Design Example 9.6 

Problem: Using the system in the Figure, Design a lag-lead compensator 

so that the system can operate with a twofold reduction in settling time, 

and 20% overshoot and a tenfold improvement in steady-state error for a 

ramp input 

 

 

 

 

 

Solution: The uncompensated system operating at 20% overshoot has 

dominant poles at -1.794+j3.501 with gain 192.1, and a third pole at -

12.41. The complete performance is shown in next table. 



Root locus for uncompensated system of Example 9.6 

To compensate the system to realize a twofold reduction in settling time, the 

real part of the dominant poles must be increased by a factor of 2, thus,  

 

And the imaginary part is  
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Predicted characteristics of uncompensated, lead-compensated, 

and lag-lead- compensated systems of Example 9.6 



Evaluating the compensator pole for Example 9.6 

Now to design the lead 

compensator, arbitrarily 

select a location for the 

lead compensator zero at 

-6, to cancel the pole. 

To find the location of the 

compensator pole. Using 

program sum the angles 

to get -164.65. and the 

contribution of the pole is 

-15.35 we find the 

location of the pole from 

the figure as 

Results are satisfactory 

see results in next slide  

7.003
tan15.35    and p 29.1

3.588
c

cp
  





Root locus for lead-compensated system of Example 9.6 



Improvement in step response for lag-lead- compensated system 

of Example 9.6 



Root locus for  lag-lead- compensated system of Example 9.6 

Since the uncompensated system’s open-loop transfer function is 

 

 

The static error constant of the uncompensated system is 3.201 

Since the open-loop transfer function of the lead-compensated system is 

 

 

the static error constant of the lead-compensated system is 6.794, so we have 

improvement by a factor of 2.122.   

To improve the original system error by a factor of 10, the lag compensator 

must be designed to improve the error by a factor of 10/2.122 = 4.713 
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Root locus for  lag-lead- compensated system of Example 9.6 

We arbitrarily choose the lag 

compensator pole at 0.01, which then 

places the zero at 0.04713 yielding        

 

 

as a lag compensator  

and            

 

 

as lag-lead-compensated system open-

loop transfer function  
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Predicted characteristics of uncompensated, lead-compensated, 

and lag-lead- compensated systems of Example 9.6 



Improvement in step response for lag-lead- compensated system of Example 9.6 


