
Improvement in ramp response error for the system of Example 9.6: 



a. Root locus before cascading notch filter; 

b. typical closed-loop step response  before 

cascading notch filter; 

c. pole-zero plot of a notch filter; 

d. root locus after cascading notch filter; 

e. closed-loop step response after 

cascading notch filter. 



Types of cascade compensators 



Types of cascade compensators  



 

Generic control system with feedback compensation 

Equivalent block 

diagram 



a. Transfer function of a tachometer 

b. Tachometer feed-back compensation 



The Figure shows that the loop 

gain, G(s)H(s), is 

G(s)H(s) = K1G1(s){KfHc(s)+KG2(s)} 

Without feedback, KfHc(s), the loop gain is 

G(s)H(s) = KK1G1(s)G2(s) 

Thus, the effect of adding feedback is to  

replace the poles and zeros of G2(s) with the 

poles and zeros of [KfHc(s) + KG2(s)].  

Hence, this method is similar to cascade 

compensation in that we add new poles and zeros via H(s) to reshape the root 

locus to go through the design point. However, one must remember that zeros of 

the equivalent feedback shown in the Figure, H(s) = [KfHc(s) +KG2(s)]/KG2(s), 

are not closed-loop zeros. 

Equivalent block diagram for the feedback compensator 

For example, if G2(s) = 1 and the minor-loop feedback, KfHc(s), is a rate 

sensor, = KfS, then the loop gain is G(s)H(s) = KfK1G1(s)(s+K/Kf) 

Thus, a zero at -K/Kf is added to the existing open-loop poles and zeros. This 

zero reshapes the root locus to go through the desired design point. Again, this 

zero is not a closed-loop zero. 



Example 9.7 Compensating Zero via Rate Feedback 

PROBLEM: Given the system of Figure 

9.49(a), design rate feedback compensation, 

as shown in Figure 9.49(b), to reduce the 

settling time by a factor of 4 while continuing 

to operate the system with 20% overshoot. 

 

SOLUTION: First design a PD compensator. 

For the uncompensated system, search 

along the 20% overshoot line (ξ = 0.456) and 

find that the dominant poles are at 

-1.809 ±j3.531, as shown in Figure in next 

slide. 



Root locus for uncompensated system 

The settling time is 2.21 seconds and must 

be reduced by a factor of 4 to 0.55 second. 

Next determine the location of the 

dominant poles for the compensated 

system. To achieve a fourfold decrease in 

the settling time, the real part of the pole 

must be increased by a factor of 4. Thus, 

the compensated pole has a real part of 

4(-1.809) = -7.236. The imaginary part is 

then 

ωd = -7.236 tan 117.13° = 14.12  

where 117.13° is the angle of the 20% 

overshoot line. 



Step response for uncompensated system of Example 



Predicted characteristics of uncompensated and compensated 

systems of Example 



Finding the compensator zero in Example 

Using the compensated 

dominant pole position of  

-7.236 ±j14.12, we sum the 

angles from the uncompensated 

system's poles and obtain -

277.33°. This angle requires a 

compensator zero contribution 

of +97.33° to yield 180° at the 

design point. The geometry 

shown in the Figure leads to the 

calculation of the compensator's 

zero location. Hence, 14.12/ 

(7.236 – zc) = tan(180° - 97.33°); 

from which zc = 5.42. 



The root locus for the equivalent 

compensated system is shown in the 

Figure. The gain at the design point, 

which is K1Kf from Figure 9.49(c), is 

found to be 256.7. Since Kf is the 

reciprocal of the compensator zero, Kf = 

0.185. Thus, K1 = 1388. 

Root locus for the compensated system of Example 

In order to evaluate the steady-state 

error characteristic, Kv is found from 

Figure 9.49(d) to be 

Kv = K1 /(75 + K1Kf) = 4.18 



Step response for the compensated system of Example 

we see that the closed-loop transfer function is T(s) = G(s) / {1 + G(s)H(s)} = 

  K1 / (s
3 + 20s2 + (75 + K1Kf)s + K1) 

Thus, as predicted, the open-loop zero is not a closed-loop zero, and there is no pole-

zero cancellation. Hence, the design must be checked by simulation. 

The results of the simulation are shown in Figure and show an over-damped response 

with a settling time of 0.75 second, compared to the uncompensated system's settling 

time of approximately 2.2 seconds 

 

Although not meeting the design 

requirements, the response still 

represents an improvement over 

the uncompensated system.  

Typically, less overshoot is 

acceptable. The system should be 

redesigned for further reduction in 

settling time. 



Physical Realization of Compensation --  Active-Circuit Realization 

 

 

Operational amplifier configured for transfer function realization 

Vo(s)/Vi(s) =  Z2(s)/Z1(s) 





Lag-lead compensator implemented with operational amplifiers 



PROBLEM: Implement the PID controller of  Example 9.5. 

 

SOLUTION: The transfer function of the PID controller is  

Gc(s) = (s + 55.92)(s + 0.5)/s 

which can be put in the form Gc(s) = s + 56.42 + 27.96/s 

Comparing the PID controller in Table 9.10 with previous equation we obtain the 

following three relationships: 

Example 9.9 Implementing a PID Controller 

R2/R1+C1/C2 = 56.42 

R2C1 = 1 

1/R1C2 = 27.96 

(Since there are four unknowns and three 

equations, we arbitrarily select a practical 

value for one of the elements. Selecting 

C2 = 0.1μF, the remaining values are found 

to be R1 = 357.65 kΩ, R2 = 178,891 kΩ, and 

C1 = 5.59 μF. 

The complete circuit is shown in Figure 

9.62, where the circuit element values have 

been rounded off. 




