
STATE VARIABLE MODELS 

We consider physical sytems described by nth-order ordinary differential 

equation. Utilizing a set of variables, known as state variables, we can 

obtain a set of first-order differential equations. We group these first-order 

equations using a compact matrix notation in a model known as the state 

variable model.  

 

The time-domain state variable model lends itself readily to computer 

solution and analysis. The Laplace transform is utilized to transform the 

differential equations representing the system to an algebraic equation 

expressed in terms of the complex variable s. Utilizing this algebraic 

equation, we are able to obtain a transfer function representation of the 

input-output relationship.  

 

With the ready availability of digital computers, it is convenient to consider 

the time-domain formulation of the equations representing control system. 

The time domain techniques can be utilized for nonlinear, time varying, and 

multivariable systems.  
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A time-varying control system is a system for which one or more of the 

parameters of the system may vary as a function of time.  

For example, the mass of a missile varies as a function of time as the fuel is 

expended during flight. A multivariable system is a system with several input 

and output. 

The State Variables of a Dynamic System: 

 

The time-domain analysis and design of control systems utilizes the concept 

of the state of a system.  

 

The state of a system is a set of variables such that the knowledge of these 

variables and the input functions will, with the equations describing the 

dynamics, provide the future state and output of the system.  



For a dynamic system, the state of a system is described in terms of a set of 

state variables  
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The state variables are those variables that determine the future behavior of 

a system when the present state of the system and the excitation signals are 

known. Consider the system shown in Figure 1, where y1(t) and y2(t) are the 

output signals and u1(t) and u2(t) are the input signals. A set of state 

variables [x1 x2 ... xn] for the system shown in the figure is a set such that 

knowledge of the initial values of the state variables [x1(t0) x2(t0) ... xn(t0)] at 

the initial time t0, and of the input signals u1(t) and u2(t) for t˃=t0, suffices to 

determine the future values of the outputs and state variables.  

System 
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Figure 1. Dynamic system. 



The state variables describe the future response of a system, given the 

present state, the excitation inputs, and the equations describing the 

dynamics.  

A simple example of a state variable is the state of an on-off light switch. 

The switch can be in either the on or the off position, and thus the state of 

the switch can assume one of two possible values. Thus, if we know the 

present state (position) of the switch at t0 and if an input is applied, we are 

able to determine the future value of the state of the element.  

The concept of a set of state variables that 

represent a dynamic system can be illustrated in 

terms of the spring-mass-damper system shown 

in Figure 2. The number of state variables chosen 

to represent this system should be as small as 

possible in order to avoid redundant state 

variables. A set of state variables sufficient to 

describe this system includes the position and the 

velocity of the mass.  
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y(t) u(t) 

Figure 2. 1-dof system. 
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Therefore we will define a set of variables as [x1 x2], where 
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Equation of motion in terms of state variables. 

We can write the equations that describe the behavior of the spring-mass-

damper system as the set of two first-order differential equations. 
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This set of difefrential equations 

describes the behavior of the state of 

the system in terms of the rate of 

change of each state variables. 

As another example of the state variable characterization of a system, consider the 

RLC circuit shown in Figure 3.  
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The state of this system can 

be described in terms of a set 

of variables [x1 x2], where x1 

is the capacitor voltage vc(t) 

and x2 is equal to the inductor 

current iL(t). This choice of 

state variables is intuitively 

satisfactory because the 

stored energy of the network 

can be described in terms of 

these variables. 

Figure 3 



Therefore x1(t0) and x2(t0) represent the total initial energy of the network and 

thus the state of the system at t=t0.  

Utilizing Kirchhoff’s current low at the junction, we obtain a first order 

differential equation by describing the rate of change of capacitor voltage  

L
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Kirchhoff’s voltage low for the right-hand loop provides the equation describing 

the rate of change of inducator current as 

cL
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The output of the system is represented by the linear algebraic equation 
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We can write the equations as a set of two first order differential equations in 

terms of the state variables x1 [vC(t)] and x2 [iL(t)] as follows: 
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The output signal is then 201 xR)t(v)t(y 

Utilizing the first-order differential equations and the initial conditions of the 

network represented by [x1(t0) x2(t0)], we can determine the system’s future 

and its output. 

The state variables that describe a system are not a unique set, and several 

alternative sets of state variables can be chosen. For the RLC circuit, we 

might choose the set of state variables as the two voltages, vC(t) and vL(t). 



In an actual system, there are several choices of a set of state variables that 

specify the energy stored in a system and therefore adequately describe the 

dynamics of the system. 

The state variables of a system characterize the dynamic behavior of a 

system. The engineer’s interest is primarily in physical, where the variables 

are voltages, currents, velocities, positions, pressures, temperatures, and 

similar physical variables. 

The State Differential Equation: 

The state of a system is described by the set of first-order differential 

equations written in terms of the state variables [x1 x2 ... xn]. These first-

order differential equations can be written in general form as 
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Thus, this set of simultaneous differential equations can be written in matrix 

form as follows: 
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n: number of state variables, m: number of inputs. 

The column matrix consisting of the state variables is called the state vector 

and is written as 
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The vector of input signals is defined as u. Then the system can be 

represented by the compact notation of the state differential equation as 

uBxAx 
This differential equation is also commonly called the state equation. The 

matrix A is an nxn square matrix, and B is an nxm matrix. The state differential 

equation relates the rate of change of the state of the system to the state of the 

system and the input signals. In general, the outputs of a linear system can be 

related to the state variables and the input signals by the output equation 

uDxCy 
Where y is the set of output signals expressed in column vector form. The 

state-space representation (or state-variable representation) is comprised of 

the state variable differential equation and the output equation.  
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We can write the state variable differential equation for the RLC circuit as 

and the output as 
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The solution of the state differential equation can be obtained in a manner 

similar to the approach we utilize for solving a first order differential equation. 

Consider the first-order differential equation 
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Where x(t) and u(t) are scalar functions of time. We expect an exponential 

solution of the form eat. Taking the Laplace transform of both sides, we have 
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The inverse Laplace transform of X(s) results in the solution  

  

t

0

)t(aat d)(ube)0(xe)t(x

We expect the solution of the state differential equation to be similar to x(t) 

and to be of differential form. The matrix exponential function is defined 
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which converges for all finite t and any A. Then the solution of the state 

differential equation is found to be 
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where we note that [sI-A]-1=ϕ(s), which is the Laplace transform of ϕ(t)=eAt. 

The matrix exponential function ϕ(t) describes the unforced response of 

the system and is called the fundamental or state transition matrix. 
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THE TRANSFER FUNCTION FROM THE STATE EQUATION 

The transfer function of a single input-single output (SISO) system can be 

obtained from the state variable equations. 
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where y is the single output and u is the single input. The Laplace transform 

of the equations 
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where B is an nx1 matrix, since u is a single input. We do not include initial 

conditions, since we seek the transfer function. Reordering the equation 
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Therefore, the transfer function G(s)=Y(s)/U(s) is 
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Example: 

Determine the transfer function G(s)=Y(s)/U(s) for the RLC circuit as described 

by the state differential function 
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Then the transfer function is 
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ANALYSIS OF STATE VARIABLE MODELS USING MATLAB 

Given a transfer function, we can obtain an equivalent state-space representation 

and vice versa. The function tf can be used to convert a state-space 

representation to a transfer function representation; the function ss can be used 

to convert a transfer function representation to a state-space representation. The 

functions are shown in Figure 4, where sys_tf represents a transfer function model 

and sys_ss is a state space representation.   

Linear system model conversion 

State-space object 
DuCxy

BuAxx


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sys=ss(A,B,C,D) 

DuCxy
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sys_tf=tf(sys_ss) 
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Figure 4. 

The ss function 
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For instance, consider the third-order system  
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We can obtain a state-space representation using the ss function. The state-

space representation of the system given by G(s) is   

num=[2 8 6];den=[1 8 16 6]; 

sys_tf=tf(num,den) 

sys_ss=ss(sys_tf) 

Matlab code Transfer function: 

   2 s^2 + 8 s + 6 

---------------------- 

s^3 + 8 s^2 + 16 s + 6 

  

  

a =  

         x1    x2    x3 

   x1    -8    -4  -1.5 

   x2     4     0     0 

   x3     0     1     0 

  

b =  

       u1 

   x1   2 

   x2   0 

   x3   0 

  

c =  

         x1    x2    x3 

   y1     1     1  0.75 

  

d =  

       u1 

   y1   0 

  

Continuous-time model. 

Answer 
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Block diagram with x1 defined as the leftmost state variable.  
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We can use the function expm to compute the transition matrix for a given 

time. The expm(A) function computes the matrix exponential. By contrast the 

exp(A) function calculates ea
ij for each of the elements aijϵA.   
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For the RLC network, the state-space representation is given as:   
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The initial conditions are x1(0)=x2(0)=1 and the input u(t)=0. At t=0.2, the state 

transition matrix is calculated as   

>>A=[0 -2;1 -3], dt=0.2; Phi=expm(A*dt) 

Phi = 

 

    0.9671   -0.2968 

    0.1484    0.5219 



The state at t=0.2 is predicted by the state transition method to be  
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The time response of a system can also be obtained by using lsim 

function.  The lsim function can accept as input nonzero initial conditions 

as well as an input function. Using lsim function, we can calculate the 

response for the RLC network as shown below.   
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u(t) 
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System 

Arbitrary Input Output 

t 

y(t) 

y(t)=output response at t 

T: time vector 

X(t)=state response at t 

t=times at which 

response is 

computed 
Initial conditions 

(optional) 

u=input 

[y,T,x]=lsim(sys,u,t,x0) 
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Example: Dorf and Bishop, Modern Control Systems, p173. 

 Consider the head mount of a disk reader shown in 

the figure. We will attempt to derive a model for the 

system shown in Figure 5a. Here we identify the 

motor mass M1 and the head mount mass as M2. 

The flexure spring is represented by the spring 

constant k. The force u(t) to drive the mass M1 is 

generated by the DC motor. If the spring is 

absolutely rigid (nonspringy), then we obtain the 

simplifed model shown in Figure 5b. Typical 

parameters for the two-mass system are given in 

Table 1.  

M1 M2 

q(t) y(t) u(t) 

Force 

Motor 

mass 

Head 

mass 
Head 

position 

b1 
b2 

M=M1+M2 

y(t) 

u(t) 

b1 

Figure 5a Figure 5b 

Table 1. Typical parameters of the two-mass model 

Motor mass M1= 0.02 kg  Friction at mass 1 b1=410x10-3 kgs/m Motor constant Km=0.1025 Nm/A 

Flexure spring 10<=k<=inf  Field resistance  R=1 Ω  Friction at mass 2 b2=4.1x10-3 kgm/s 

Head mounting M2=0.0005 kg Field inductance L=1 mH  Head position y(t)=x2(t) 
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To develop a state variable model, we 

choose the state variables as x1=q and 

x2=y. Then we have 
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Note that the output is dy/dt=x4. Also, for L=0 or negligible inductance, then 

u(t)=Kmv(t). For the typical parameters and k=10, we have 

Motor coil 

RLs

Km



V(s) U(s) 

Force 

Two-

mass 

system 
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THE DESIGN OF STATE VARIABLE FEEDBACK SYSTEMS 

The time-domain method, expressed in terms of state variables, can also be utilized 

to design a suitable compensation scheme for a control system. Typically, we are 

interested in controlling the system with a control signal, u(t), which is a function of 

several measurable state variables. Then we develop a state variable controller that 

operates on the information available in measured form.  

State variable design is typically comprised of three steps. In the first step, we 

assume that all the state variables are measurable and utilize them in a full-state 

feedback control law. Full-state feedback is not usually practical because it is not 

possible (in general) to measure all the states. In paractice, only certain states (or 

linear combinations thereof) are measured and provided as system outputs. The 

second step in state varaible design is to construct an observer to estimate the 

states that are not directly sensed and available as outputs. Observers can either 

be full-state observers or reduced-order observers. Reduced-order observers 

account for the fact that certain states are already available as system outputs; 

hence they do not need to be estimated. The final step in the design process is to 

appropriately connect the observer to the full-state feedback conrol low. It is 

common to refer to the state-varaible controller as a compensator. Additionally, it is 

possible to consider reference inputs to the state variable compensator to complete 

the design.  
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CONTROLLABILITY: 

Full-state feedback design commonly relies on pole-placement 

techniques. It is important to note that a system must be completely 

controllable and completely observable to allow the flexibility to place all 

the closed-loop system poles arbitrarily. The concepts of controllability and 

observability were introduced by Kalman in the 1960s.   

A system is completely controllable if there exists an unconstrained 

control u(t) that can transfer any initial state x(t0) to any other desired 

location x(t) in a finite time, t0≤t≤T. 



For the system 

BuAxx 

we can determine whether the system is controllable by examining the 

algebraic condition 

  nBABAABBrank 1n2 

The matrix A is an nxn matrix an B is an nx1 matrix. For multi input systems, 

B can be nxm, where m is the number of inputs.  

For a single-input, single-output system, the controllability matrix Pc is 

described in terms of A and B as  

 BABAABBP 1n2

c

 

which is nxn matrix. Therefore, if the determinant of Pc  is nonzero, the system 

is controllable. 



Example: 

Consider the system 

   u0x001y,u
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The determinant of Pc =1 and ≠0 , hence this system is controllable. 



Example. 

Consider a system represented by the two state equations 

12211 xdx3x,ux2x  

The output of the system is y=x2. Determine the condition of controllability. 
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c The determinant of pc is equal to d, which is 

nonzero only when d is nonzero. 
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OBSERVABILITY: 

All the poles of the closed-loop system can be placed arbitrarily in the complex 

plane if and only if the system is observable and controllable. Observability 

refers to the ability to estimate a state variable.  

A system is completely observable if and only if there exists a finite time T 

such that the initial state x(0) can be determined from the 

observation history y(t) given the control u(t).  

CxyandBuAxx 

Consider the single-input, single-output system 

where C is a 1xn row vector, and x is an nx1 column vector. This system is 

completely observable when the determinant of the observability matrix P0 

is nonzero.    



The observability matrix, which is an nxn matrix, is written as 
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Example:  

Consider the previously given system  
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   100CA,010CA 2 

Thus, we obtain 
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The det P0=1, and the system is completely observable. Note that 

determination of observability does not utility the B and C matrices.  

Example: Consider the system given by 

 x11yandu
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We can check the system controllability and observability using the Pc and P0 

matrices.  

From the system definition, we obtain 
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Therefore, the controllability matrix is determined to be 

det Pc=0 and rank(Pc)=1. Thus, the system is not controllable. 
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Therefore, the controllability matrix is determined to be 
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From the system definition, we obtain 

   11CAand11C 
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Therefore, the observability matrix is determined to be 

det PO=0 and rank(PO)=1. Thus, the system is not observable. 

If we look again at the state model, we note that 

21 xxy 

However, 

  2112121 xxuuxxx2xx  


