Vector
Fields



Scalar

Scalar: A quantity that has only magnitude.

For example time, mass, distance, temperature
and population are scalars.

Scalar is represented by a letter — e.g., A, B



Vector

Vector: A quantity that has both magnitude and
direction.

Example: Velocity, force, displacement and
electric field intensity.

Vector is represent by a letter such as A, B, 4
or ¥

It can also be written as A= A4

where A is ‘5‘ which is the magnitude and d is
unit vector



Unit Vector

A unit vector along A is defined as a vector whose

magnitude is unity (i.e., 1) and its direction is
along A.

It can be written as a, or 4
A A

1Al A
Thus A:AaA

a,




Vector Addition

The sum of two vectors for example vectors A
and B can be obtain by moving one of them so
that its terminal point (tip) coincides with the
initial point (tail) of the other

A + E Terminal point
— initial

I
h B ; A
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Terminal point A+ B



Vector Subtraction

Vector subtraction is similarly carried out as
D=-A-B=A+(-B)
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Figure (c)

Figure (c) shows that vector D is a
— B vector that is must be added to B to
give vector A

> |

A B So if vector A and B are placed tail to
a tail then vector D is a vector that runs

from the tip of B to A.



Vector multiplication

Scalar (dot ) product (AeB)
Vector (cross) product (A X B)
Scalar triple product A e (B X C)

Vector triple product A X (B X C)



Multiplication of a vector by a
scalar

Multiplication of a scalar k to a vector A gives a vector
that points in the same direction as A and magnitude
equal to |KA

E. | kl<1
A —
A [ kI>1

The division of a vector by a scalar quantity is a
multiplication of the vector by the reciprocal of the
scalar quantity.



Scalar Product

The dot product of two vectors 4 and B , written as _
A e B is defined as the product of the magnitude of 4
and B , and the projection of 4 onto B (or vice versa).

Thus :

ZOEZ|A”B|COSH

Where 6 is the angle between Aand B The result of dot
product is a scalar quantity.



Vector Product

The cross (or vector) product of two vectors A
and B, written as is defined as

AxB=lAllBlsin@,,n

where; 1 a unit vector perpendicular to the plang
that contains the two vectors. The direction of n

IS taken as the direction of the right thumb (using
right-nand rule)

The product of cross product is a vector



Right-hand Rule

Uxv




Components of a vector

A direct application of vector product is in determining
the projection (or component) of a vector in a given
direction. The projection can be scalar or vector.

Given a vector A, we define the scalar component
AB of A along vector B as

Ap=A cos 0,5 = |Allagl cos 0,5
or Ap=A-a,



Dot product

If ;\=(AX,Ay,AZ) and E:(Bx,By,BZ) then
AeB=AB,+A,B,+A B,

which is obtained by multiplying A and B
component by component.

It follows that modulus of a vector is

A=VAeA=A2+42+4>



Cross Product
If A=(A,, A,, A,), B=(B,, B,, B,) then

dx (y d:z
Ax Ay A:
Bx By B:

Ay A: Az Ax Ax Ay
a, + a, + a,
By Bz Bz Bx Y Bx By
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=(AyB,—A,By)a,+(A, B, —AB,)ay, +(ABy, —AyB))a,



Cross Product

Cross product of the unit vectors yield:

Z

a xa, =a

a,xa, =a

X

a,xa, =a,



Example 1

Given three vectors P = 2d, — 4,
Q=2a, —a,+2a
R=2a,-3a, +a,

<

Determine

a) (P+Q) X (P-Q)

b) Q+«(R X P)

c) P+«(Q XR)

d) sind,,

e) P X(QXR)

f) A unit vector perpendicular to both Q and R



Solution

(a) P+QXP-Q=PXP-Q+QXP-Q
=PXP-PXQ+QXP-QXQ
=0+ QXP+QXP-0

=2QXP
a, a, a,
=22 =1 2
2 0 -1

=2(1 —0)a, + 2(4 + 2)a, + 2(0 + 2) a,
= 2a, + 12a, + 4a,



Solution (cont’)

(b) The only way Q - R X P makes sense is

Alternatively:

Q- RXP)=(2,—-1,2)-

X

)
2

a,
—3

0

=(2,—-1,2)-3,4,6)

=6—4+12 =14,

Q-RXP)=

2
2
2

i |
=3
0

=]

aE
1
]




Solution (cont’)

To find the determinant of a 3 X 3 matrix, we repeat the first two rows
and cross multiply; when the cross multiplication is from right to left, the
result should be negated as shown below. This technique of finding a
determinant applies only to a 3 X 3 matrix. Hence

Q-RXP)= _ _~
-
e
= +6 +0 -2 +12 —0 -2
= 14




Solution (cont’)

(c) Fromeq. (1.28)
P-QXR)=Q-RXP) =14
or

P-(QXR)=(2,0,—-1):(52,—4

=10+ 0+ 4
= 14
(d) | . Q X R| _ (5, 2, —4)]
" 1QIR] |2, —1,2)]|2. =3, 1|
Vas Vs

= 0.5976

T 3Vie Via



Solution (cont’)

(€) P X (Q X R)

(2. 0,—=1] K52, =)
(2,3,4)

Alternatively, using the bac-cab rule,

PX(QXR)=QFP-R)—-R(FP-Q
=2, ~1,2)4 +0—-1) —(2.-3.1D& +0— 2
=(2,3,4)

(f) A unit vector perpendicular to both Q and R is given by
_*QXR _ £(52 -4

1QXR| /a5

= 1(0.745, 0.298, —0.596)

a

Note that [a| = 1,a-Q = 0 = a - R. Any of these can be used to check a.



Solution (cont’)

(g) The component of P along Q is

Py = |P| cos Oppa,

P.
_@+0-22~12 2.
B 4+ 1+ 4) B 9(2’ 1,2)

= 0.4444a, — 0.2222a, + 0.4444a..



Cylindrical Coordinates

Very convenient when dealing with problems having
cylindrical symmetry.

A point P in cylindrical coordinates is represented as
(p, ®, z) where

p: is the radius of the cylinder; radial displacement
from the z-axis

®: azimuthal angle or the angular displacement
from x-axis

z . vertical displacement z from the origin (as in the
cartesian system).



Cylindrical Coordinates

Z

Ry
y ¢

\_(pg/y
X



Cylindrical Coordinates

The range of the variables are
0<p<oo 0P <21 ,-0<z<x

vector 4 in cylindrical coordinates can be
writtenas (A A4, A or Aja +Agay + A2,

The magnitude of 4 is

[Al= A+ A +A]



Relationships Between
Variables

The relationships between the variables (x,y,z) of the
Cartesian coordinate system and the cylindrical system
(p, @, z) are obtained as

p:\/x2+y2 X = pCcos¢
d=tan" y/x y=psing
z2=12 <7<

So a point P (3, 4, 5) in Cartesian coordinate is the
same as?



Relationships Between

Variables
0 = V3 +4% =5
¢=tan" 4/3=0.927 rad

Z=15

So a point P (3, 4, 5) in Cartesian coordinate is the
same as P ( 5, 0.927,5) in cylindrical coordinate)



Spherical Coordinates
(r,0,9)

The spherical coordinate system is used
dealing with problems having a degree of
spherical symmetry.

Point P represented as (r,0,¢) where
r :the distance from the origin,

O : called the colatitude is the angle between z-axis
and vector of P,

® : azimuthal angle or the angular displacement
from x-axis (the same azimuthal angle in
cylindrical coordinates).



Spherical Coordinates

o
—-—ﬂ.ﬂd
; 5 P(R1, 91, 01)
0=9, 1 Ry
conical 0
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Spherical Coordinates
(r;0,)

The range of the variables are
0<r<eo 0<O0<mm,0<@p<2m

A vector A in spherical coordinates written as
(AnAg,A,) Or Aa, + Agag + Aya,

The magnitude of A is

[Al=JA’+ A +A,)



Relation to Cartesian
coordinates system

rF=ax>+y2+z2

xX=rsinfcosy
2 2

1 (\/x + Y )| \y=rsin@sing
Z

O = tan

7 =rcos@

$ = tan " =
x




Relationship between cylinder
and spherical coordinate
~system

A

p=rsin 8

P(x,y,2)=P(r, 6, §) = P(p, ¢, 2)

z=rcos @

>y

p X=pcos ¢




Point transformation

Point transformation between cylinder and spherical
coordinate is given by

7”:\/,02+22 H:tan_lg ¢

@

or

p=rsind z=rcosd 7,

|
ASN



Example

10

Express vector B = —-a, +rcosth, +a,

in Cartesian and cylindrical coordinates. Find B at
(-3, 4 0) and at (5, 11/2, -2)



Differential Elements

In vector calculus the differential elements in
length, area and volume are useful.

They are defined in the Cartesian, cylindrical
and spherical coordinate



Differential elements

Cartesian Coordinates

Differential displacement :

dl = dxa, +dya, +dza,




Differential elements

Cartesian Coordinates

(a) (b) (c)

/ =y
dS = dydza_

Differential normal area: dS = dxdzay

dS = dxdya,

X




Differential elements

Cartesian Coordinates

Differential 7
displacement di =, +dya, +daa,
Differential dS = dvdza
normal area . - ’

dS = dxdzay

d§ — dxdyaz
Differential dv = dxdvdz
volume Y




Differential elements

Cylindrical Coordinates

Differential displacement : dl = dpa , + pdga, +dza_



Differential elements

Cylindrical Coordinates

Differential normal area: |dS = dpdza,




Differential elements

Cylindrical Coordinates

Differential dl =dpa,+ pdda, +dza,
displacement
Differential normal _.
area dS = pdgdza,
dsS = dpdza,
dS = pdgdpa,

Differential volume dv = pdodgdz




Differential elements

Spherical Coordinates
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sy 4 rsin 0 do

N od = rsin e

Differential displacement :dl = dra, +rd6a, + rsin Gdga,



Differential elements

Spherical Coordinates

(a) (b) (c)

-y
dS = r?sin Od Od ga
Differential normal area: dS = rsin Gdrdsa,
ds = rdrdfa,,



Differential elements

Spherical Coordinates

Differential - .
displacement dl =dra, +rd6a, +rsin dga,
Differential dS = r? sin Gd@d ga.

| .
normatarea dS = rsin @drdga,

dS = rdrd6a,

Differential 2
volume dv = r” sin drd &d ¢




Del Operator

Written as V is the vector differential operator. Also

know

n as the gradient operator. The operator in useful

In defining:

1. T
2. T
3. T
4. T

ne gradient of a scalar V, writtenas VV

ne divergence of a vector A, written as Ve A
he curl of a vector A, written as  V x A

he Laplacian of a scalar V, written as V2V




Gradient of Scalar

G is the gradient of V. Thus

gradV =VV = oV ax + v ay+6—vaz
Ox oy Oz
In cylindrical coordinates,
VV:a_Vap : = 8Va¢ : 8Vaz
op P OP Oz
In spherical coordinates,
1 1

VV:8V3r+__8Vae : aVaq)

r 00 rsin © o¢



Example :

Given : U = r’zcos2¢

oU o oU
VU=-—a,+—a;+—a
or rog

2rzcos2¢ a,— 2rzsim2¢ ay + r°cos2¢ a,

Given : W = 10Rsm?*6cosd

oW oW oW

VIW =—ag +——a,; + — a,
OR Ro6 Rsm &0¢

=10 sn’0 cos ¢ ag + 10 sm26cosd ag - 10 snBsmoay,



Divergence

In Cartesian coordinates,
OAx OA, OA:
_I_

VeA= +
Or O O
In cylindrical coordinates,
Ve A — 1 0O (PAL) + 1 8A¢+8Az
0 Op p oY 0z
In spherical coordinate,
V.A:izi(rzAr)+ I 0 (Aosin 8) + I oA

r° or rsin @ 06 rsinf oO¢



Example

Given : P =x’yza, +xza,

V.P= EH: + EJE":*”}, + EJi'i”_z.
ox oy oz

0, 5 0 0
=—(x"yz2)+ —(0)+ —(xz
o (X7 y2) ay() 5, (¥2)

= 2XyZ t+ X



Curl of a Vector

lan rdin
In Cartesian coordinates, a. o

o O O
oOx Oy Oz
Ax Ay Az

N >~ A =

In cylindrical coordinates,

dp pas dz
1|0 O O
pOolop O¢ Oz
Ap Ay A:

V<A =




Curl of a Vector

In spherical coordinates,

ar rae (rsiné@)ay
1 0 O O
r’sin@|or 00 0¢

A rAo (rsin@)Ay

VxA=




Examples on Curl Calculation

. 3 . )
Given A =e¥ a, + sin Xy a, + cos*(xz) a,

Ax y a:
vxa-|2 29

ox oy 07

e? sinxy cos’(xz)

OA OA
VXA=a, 0A, 0OA, ra, 0A, 0A, ‘a, y OA
dy 0z 0z 0Ox ox Oy
VXA:ax(O—O)+ay(0+2zcosxzsinxz)+az(ycosxy—xexy)

VXA = ay(z sin2xz)+a, (y COS Xy — xexy)



Laplacian of a scalar

The Laplacian of a scalar field V, written as V2V is
defined as the divergence of the gradient of V.

In Cartesian coordinates,
2 2 2
o’V o’V oV
ox°> oy’ o0z’

ViV



Laplacian of a scalar

In cylindrical coordinates,

1 o oV 1 o°V 0oV
VV=——"|p— |+ —5—5 +—
0 Op op Yool oz

In spherical coordinates,

2
VQVZLE rza—V)+ - 1 0 (smGa—Vj .12 8\2]
or r°sin © 00 00 r’sin” 0 O



