

Vector Fields

Scalar

- Scalar: A quantity that has only magnitude.
- For example time, mass, distance, temperature and population are scalars.
- Scalar is represented by a letter e.g., A, B

Vector

- Vector: A quantity that has both magnitude and direction.
- Example: Velocity, force, displacement and electric field intensity.
- Vector is represent by a letter such as **A**, **B**, \vec{A} or $\vec{\Psi}$
- It can also be written as $\vec{A} = A\hat{a}$ where A is $|\vec{A}|$ which is the magnitude and \hat{a} is unit vector

Unit Vector

- A unit vector along A is defined as a vector whose magnitude is unity (i.e., 1) and its direction is along A.
- It can be written as \mathbf{a}_A or \hat{a} $a_A = \frac{A}{|\vec{A}|} = \frac{A}{\vec{A}}$ Thus $A = \vec{A}a_A$

Vector Addition

The sum of two vectors for example vectors A and B can be obtain by moving one of them so that its terminal point (tip) coincides with the initial point (tail) of the other

Vector Subtraction

Vector subtraction is similarly carried out as

 $\mathbf{D} = \mathbf{A} - \mathbf{B} = \mathbf{A} + (-\mathbf{B})$

 $-\vec{B}$ $\vec{A}-\vec{B}$

Figure (b)

Figure (c) shows that vector **D** is a vector that is must be added to **B** to give vector **A**

So if vector **A** and **B** are placed tail to tail then vector **D** is a vector that runs from the tip of **B** to **A**.

Vector multiplication

- Scalar (dot) product (A•B)
- Vector (cross) product (A X B)
- Scalar triple product A (B X C)
- Vector triple product A X (B X C)

Multiplication of a vector by a scalar

 Multiplication of a scalar k to a vector A gives a vector that points in the same direction as A and magnitude equal to |kA|

$$\vec{A} \qquad |k| < 1$$

$$\vec{A} \qquad |k| > 1$$

The division of a vector by a scalar quantity is a multiplication of the vector by the reciprocal of the scalar quantity.

Scalar Product

The dot product of two vectors \$\vec{A}\$ and \$\vec{B}\$, written as \$\vec{A} \u2265 \$\vec{B}\$ is defined as the product of the magnitude of \$\vec{A}\$ and \$\vec{B}\$, and the projection of \$\vec{A}\$ onto \$\vec{B}\$ (or vice versa).
Thus ;

$\vec{A} \bullet \vec{B} = |A| |B| \cos \theta$

Where θ is the angle between \overrightarrow{A} and \overrightarrow{B} The result of dot product is a scalar quantity.

Vector Product

 The cross (or vector) product of two vectors A and B, written as is defined as

$\vec{A} \times \vec{B} = |A| |B| \sin \theta_{AB} \hat{n}$

where; \hat{n} a unit vector perpendicular to the plane that contains the two vectors. The direction of \hat{n} is taken as the direction of the right thumb (using right-hand rule)

The product of cross product is a vector

Components of a vector

 A direct application of vector product is in determining the projection (or component) of a vector in a given direction. The projection can be scalar or vector.

Given a vector A, we define the scalar component
 AB of A along vector B as

$$A_B = A \cos \theta_{AB} = |A| |a_B| \cos \theta_{AB}$$

or $A_B = A \cdot a_B$

Dot product

If $\vec{A} = (A_x, A_y, A_z)$ and $\vec{B} = (B_x, B_y, B_z)$ then $\vec{A} \bullet \vec{B} = A_x B_x + A_y B_y + A_z B_z$

which is obtained by multiplying A and B component by component.

It follows that modulus of a vector is

$$|\vec{A}| = \sqrt{\vec{A} \bullet \vec{A}} = \sqrt{A_x^2 + A_y^2 + A_z^2}$$

Cross Product

• If $\mathbf{A} = (A_x, A_y, A_z), \mathbf{B} = (B_x, B_y, B_z)$ then

 $\vec{A} \times \vec{B} = \begin{vmatrix} a_x & a_y & a_z \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$ $= \begin{vmatrix} A_y & A_z \\ B_y & B_z \end{vmatrix} a_x + \begin{vmatrix} A_z & A_x \\ B_z & B_x \end{vmatrix} a_y + \begin{vmatrix} A_x & A_y \\ B_x & B_y \end{vmatrix} a_z$

 $= (A_{y}B_{z} - A_{z}B_{y})a_{x} + (A_{z}B_{x} - A_{x}B_{z})a_{y} + (A_{x}B_{y} - A_{y}B_{x})a_{z}$

Cross product of the unit vectors yield:

$$\mathbf{a}_{\mathbf{x}} \times \mathbf{a}_{\mathbf{y}} = \mathbf{a}_{\mathbf{z}}$$

 $\mathbf{a}_{\mathbf{y}} \times \mathbf{a}_{\mathbf{z}} = \mathbf{a}_{\mathbf{x}}$
 $\mathbf{a}_{\mathbf{z}} \times \mathbf{a}_{\mathbf{a}} = \mathbf{a}_{\mathbf{y}}$

Example 1

Given three vectors $\mathbf{P} = 2a_x - a_z$ $\mathbf{Q} = 2a_x - a_y + 2a_z$ $\mathbf{R} = 2a_x - 3a_y + a_z$

Determine

- a) (P+Q) X (P-Q)
- b) Q•(R X P)
- c) P•(Q X R)
- d) $\sin \theta_{QR}$
- e) PX(QXR)
- f) A unit vector perpendicular to both **Q** and **R**

(a)
$$(\mathbf{P} + \mathbf{Q}) \times (\mathbf{P} - \mathbf{Q}) = \mathbf{P} \times (\mathbf{P} - \mathbf{Q}) + \mathbf{Q} \times (\mathbf{P} - \mathbf{Q})$$
$$= \mathbf{P} \times \mathbf{P} - \mathbf{P} \times \mathbf{Q} + \mathbf{Q} \times \mathbf{P} - \mathbf{Q} \times \mathbf{Q}$$
$$= 0 + \mathbf{Q} \times \mathbf{P} + \mathbf{Q} \times \mathbf{P} - 0$$
$$= 2\mathbf{Q} \times \mathbf{P}$$
$$= 2 \begin{vmatrix} \mathbf{a}_x & \mathbf{a}_y & \mathbf{a}_z \\ 2 & -1 & 2 \\ 2 & 0 & -1 \end{vmatrix}$$
$$= 2(1 - 0) \mathbf{a}_x + 2(4 + 2) \mathbf{a}_y + 2(0 + 2) \mathbf{a}_z$$
$$= 2\mathbf{a}_x + 12\mathbf{a}_y + 4\mathbf{a}_z$$

(b) The only way $\mathbf{Q} \cdot \mathbf{R} \times \mathbf{P}$ makes sense is

$$\mathbf{Q} \cdot (\mathbf{R} \times \mathbf{P}) = (2, -1, 2) \cdot \begin{vmatrix} \mathbf{a}_x & \mathbf{a}_y & \mathbf{a}_z \\ 2 & -3 & 1 \\ 2 & 0 & -1 \end{vmatrix}$$
$$= (2, -1, 2) \cdot (3, 4, 6)$$
$$= 6 - 4 + 12 = 14.$$

Alternatively:

$$\mathbf{Q} \cdot (\mathbf{R} \times \mathbf{P}) = \begin{vmatrix} 2 & -1 & 2 \\ 2 & -3 & 1 \\ 2 & 0 & -1 \end{vmatrix}$$

To find the determinant of a 3 X 3 matrix, we repeat the first two rows and cross multiply; when the cross multiplication is from right to left, the result should be negated as shown below. This technique of finding a determinant applies only to a 3 X 3 matrix. Hence

(c) From eq. (1.28)

1

 $\mathbf{P} \cdot (\mathbf{Q} \times \mathbf{R}) = \mathbf{Q} \cdot (\mathbf{R} \times \mathbf{P}) = 14$

or

 $\mathbf{P} \cdot (\mathbf{Q} \times \mathbf{R}) = (2, 0, -1) \cdot (5, 2, -4)$ = 10 + 0 + 4= 14

(d)

$$\sin \theta_{QR} = \frac{|\mathbf{Q} \times \mathbf{R}|}{|\mathbf{Q}||\mathbf{R}|} = \frac{|(5, 2, -4)|}{|(2, -1, 2)||(2, -3, 1)|}$$
$$= \frac{\sqrt{45}}{3\sqrt{14}} = \frac{\sqrt{5}}{\sqrt{14}} = 0.5976$$

(e) $\mathbf{P} \times (\mathbf{Q} \times \mathbf{R}) = (2, 0, -1) \times (5, 2, -4)$ = (2, 3, 4)

Alternatively, using the bac-cab rule,

$$\mathbf{P} \times (\mathbf{Q} \times \mathbf{R}) = \mathbf{Q}(\mathbf{P} \cdot \mathbf{R}) - \mathbf{R}(\mathbf{P} \cdot \mathbf{Q})$$

= (2, -1, 2)(4 + 0 - 1) - (2, -3, 1)(4 + 0 - 2)
= (2, 3, 4)

(f) A unit vector perpendicular to both Q and R is given by

$$\mathbf{a} = \frac{\pm \mathbf{Q} \times \mathbf{R}}{|\mathbf{Q} \times \mathbf{R}|} = \frac{\pm (5, 2, -4)}{\sqrt{45}}$$

= \pm (0.745, 0.298, -0.596)

Note that $|\mathbf{a}| = 1$, $\mathbf{a} \cdot \mathbf{Q} = 0 = \mathbf{a} \cdot \mathbf{R}$. Any of these can be used to check \mathbf{a} .

(g) The component of \mathbf{P} along \mathbf{Q} is

$$P_Q = |\mathbf{P}| \cos \theta_{PQ} \mathbf{a}_Q$$

= $(\mathbf{P} \cdot \mathbf{a}_Q) \mathbf{a}_Q = \frac{(\mathbf{P} \cdot \mathbf{Q}) \mathbf{Q}}{|\mathbf{Q}|^2}$
= $\frac{(4 + 0 - 2)(2, -1, 2)}{(4 + 1 + 4)} = \frac{2}{9}(2, -1, 2)$
= $0.4444 \mathbf{a}_x - 0.2222 \mathbf{a}_y + 0.4444 \mathbf{a}_z$.

Cylindrical Coordinates

 Very convenient when dealing with problems having cylindrical symmetry.

- A point P in cylindrical coordinates is represented as (ρ, Φ, z) where
 - ○p: is the radius of the cylinder; radial displacement from the z-axis
 - Φ: azimuthal angle or the angular displacement from x-axis
 - Oz : vertical displacement z from the origin (as in the cartesian system).

Cylindrical Coordinates

Cylindrical Coordinates

- The range of the variables are $0 \le \rho < \infty, \ 0 \le \Phi < 2\pi, -\infty < z < \infty$
- vector \vec{A} in cylindrical coordinates can be written as $(A_{\rho}, A_{\phi}, A_z)$ or $A_{\rho}a_{\rho} + A_{\phi}a_{\phi} + A_za_z$

• The magnitude of \vec{A} is

$$|\vec{A}| = \sqrt{A_{\rho}^{2} + A_{\phi}^{2} + A_{z}^{2}}$$

Relationships Between Variables

- The relationships between the variables (x,y,z) of the Cartesian coordinate system and the cylindrical system (ρ, φ, z) are obtained as
 - $\rho = \sqrt{x^2 + y^2} \qquad x = \rho \cos \phi$ $\phi = \tan^{-1} y / x \qquad y = \rho \sin \phi$ $z = z \qquad z = z$
- So a point P (3, 4, 5) in Cartesian coordinate is the same as?

Relationships Between Variables

$$\rho = \sqrt{3^2 + 4^2} = 5$$

 $\phi = \tan^{-1} 4/3 = 0.927 \, rac$
 $z = 5$

 So a point P (3, 4, 5) in Cartesian coordinate is the same as P (5, 0.927,5) in cylindrical coordinate)

Spherical Coordinates (r, θ, ϕ)

 The spherical coordinate system is used dealing with problems having a degree of spherical symmetry.

• Point P represented as (r, θ, φ) where

- \bigcirc *r* : the distance from the origin,
- \bigcirc θ : called the *colatitude* is the angle between z-axis and vector of P,
- Φ : *azimuthal* angle or the angular displacement from x-axis (the same azimuthal angle in cylindrical coordinates).

Spherical Coordinates (*r*,θ,φ)

• The range of the variables are $0 \le r < \infty$, $0 \le \theta < \pi$, $0 < \varphi < 2\pi$

• A vector **A** in spherical coordinates written as $(A_r, A_{\theta}, A_{\phi})$ or $A_r a_r + A_{\theta} a_{\theta} + A_{\phi} a_{\phi}$

The magnitude of A is

$$|\vec{A}| = \sqrt{A_r^2 + A_{\phi}^2 + A_{\theta}^2}$$

Relation to Cartesian coordinates system

$$r = \sqrt{x^{2} + y^{2} + z^{2}}$$

$$\theta = \tan^{-1} \frac{(\sqrt{x^{2} + y^{2}})}{z}$$

$$\varphi = \tan^{-1} \frac{y}{x}$$

$$x = r \sin \theta \cos \phi$$

$$y = r \sin \theta \sin \phi$$

$$z = r \cos \theta$$

Relationship between cylinder and spherical coordinate system

Point transformation

Point transformation between cylinder and spherical coordinate is given by

$$r = \sqrt{\rho^2 + z^2}$$
 $\theta = \tan^{-1}\frac{\rho}{z}$ $\phi = \phi$

or

$$\rho = r \sin \theta$$
 $z = r \cos \theta$ $\phi = \phi$

Example

Express vector $\mathbf{B} = \frac{10}{r} \mathbf{a}_r + r \cos \theta \mathbf{a}_{\theta} + \mathbf{a}_{\phi}$

in Cartesian and cylindrical coordinates. Find **B** at (-3, 4 0) and at (5, $\pi/2$, -2)

 In vector calculus the *differential elements* in length, area and volume are useful.

 They are defined in the Cartesian, cylindrical and spherical coordinate

Cartesian Coordinates

Differential displacement :

$$d\vec{l} = dxa_x + dya_y + dza_z$$

Cartesian Coordinates

Cartesian Coordinates

Differential displacement	$d\vec{l} = dx\mathbf{a}_x + dy\mathbf{a}_y + dz\mathbf{a}_z$
Differential normal area	$d\vec{S} = dydz\mathbf{a}_{x}$ $d\vec{S} = dxdz\mathbf{a}_{y}$ $d\vec{S} = dxdz\mathbf{a}_{y}$
	$ub = uxuya_z$
Differential volume	dv = dxdydz

Cylindrical Coordinates

Differential displacement : $d\vec{l} = d\rho \mathbf{a}_{\rho} + \rho d\phi \mathbf{a}_{\phi} + dz \mathbf{a}_{z}$

Cylindrical Coordinates

Cylindrical Coordinates

Differential displacement	$d\vec{l} = d\rho a_{\rho} + \rho d\phi a_{\phi} + dz a_{z}$
Differential normal area	$d\vec{S} = \rho d\phi dz a_{\rho}$ $d\vec{S} = d\rho dz a_{\phi}$ $d\vec{S} = \rho d\phi d\rho a_{z}$
Differential volume	$dv = \rho d\rho d\phi dz$

Spherical Coordinates

Differential displacement : $d\vec{l} = dra_r + rd\theta a_\theta + r\sin\theta d\phi a_\phi$

Spherical Coordinates

Spherical Coordinates

Differential displacement	$d\vec{l} = dra_r + rd\theta a_\theta + r\sin\theta d\phi a_\phi$
Differential normal area	$d\vec{S} = r^{2} \sin\theta d\theta d\phi a_{r}$ $d\vec{S} = r \sin\theta dr d\phi a_{\theta}$ $d\vec{S} = r dr d\theta a_{\phi}$
Differential volume	$dv = r^2 \sin \theta dr d\theta d\phi$

Del Operator

- Written as ∇ is the vector differential operator. Also known as the gradient operator. The operator in useful in defining:
 - 1. The gradient of a scalar V, written as ∇V 2. The divergence of a vector **A**, written as $\nabla \bullet \mathbf{A}$ 3. The curl of a vector **A**, written as $\nabla \times \mathbf{A}$ 4. The Laplacian of a scalar V, written as $\nabla^2 V$

Gradient of Scalar

G is the gradient of V. Thus

grad
$$V = \nabla V = \frac{\partial V}{\partial x}a_x + \frac{\partial V}{\partial y}a_y + \frac{\partial V}{\partial z}a_z$$

In cylindrical coordinates,

$$\nabla \mathbf{V} = \frac{\partial \mathbf{V}}{\partial \rho} \mathbf{a}_{\rho} + \frac{1}{\rho} \frac{\partial \mathbf{V}}{\partial \phi} \mathbf{a}_{\phi} + \frac{\partial \mathbf{V}}{\partial z} \mathbf{a}_{z}$$

In spherical coordinates, $\nabla \mathbf{V} = \frac{\partial \mathbf{V}}{\partial r} \mathbf{a}_{r} + \frac{1}{r} \frac{\partial \mathbf{V}}{\partial \theta} \mathbf{a}_{\theta} + \frac{1}{r \sin \theta} \frac{\partial \mathbf{V}}{\partial \phi} \mathbf{a}_{\phi}$

Example:

 $\underline{\text{Given}}: U = r^2 z \cos 2\phi$

$$\nabla U = \frac{\partial U}{\partial r} \mathbf{a}_{\mathsf{r}} + \frac{\partial U}{r \partial \phi} \mathbf{a}_{\phi} + \frac{\partial U}{\partial Z} \mathbf{a}_{\mathsf{z}}$$

 $2rz\cos 2\phi \mathbf{a_r} - 2rz\sin 2\phi \mathbf{a_{\phi}} + r^2\cos 2\phi \mathbf{a_z}$

Given: W = 10Rsin²
$$\theta$$
cos ϕ
 $\nabla W = \frac{\partial W}{\partial R} \mathbf{a}_{R} + \frac{\partial W}{R \partial \theta} \mathbf{a}_{\theta} + \frac{\partial W}{R \sin \theta \partial \phi} \mathbf{a}_{\phi}$

= $10 \sin^2\theta \cos\phi \mathbf{a}_{\mathbf{R}} + 10 \sin^2\theta \cos\phi \mathbf{a}_{\theta} - 10 \sin\theta \sin\phi \mathbf{a}_{\phi}$

Divergence

In Cartesian coordinates,

$$\nabla \bullet \mathbf{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

- In cylindrical coordinates, $\nabla \bullet \mathbf{A} = \frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho A_{\rho}) + \frac{1}{\rho} \frac{\partial A_{\phi}}{\partial \phi} + \frac{\partial A_z}{\partial z}$
- In spherical coordinate,

$$\nabla \bullet A = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 A_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (A_\theta \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial A_\phi}{\partial \phi}$$

Example

 $\underline{\text{Given}}: \mathbf{P} = x^2 yz \, \mathbf{a_x} + xz \, \mathbf{a_z}$

= 2xyz + x

Curl of a Vector

In Cartesian coordinates, $\nabla \times \mathbf{A} = \begin{vmatrix} \mathbf{a}_{x} & \mathbf{a}_{y} & \mathbf{a}_{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \mathbf{A}_{x} & \mathbf{A}_{y} & \mathbf{A}_{z} \end{vmatrix}$

In cylindrical coordinates,

$$\nabla \times \mathbf{A} = \frac{1}{\rho} \begin{vmatrix} a_{\rho} & \rho a_{\phi} & a_{z} \\ \frac{\partial}{\partial \rho} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial z} \\ A_{\rho} & \rho A_{\phi} & A_{z} \end{vmatrix}$$

Curl of a Vector

In spherical coordinates,

$$\nabla \times \mathbf{A} = \frac{1}{r^2 \sin \theta} \begin{vmatrix} a_r & ra_\theta & (r \sin \theta) a_\phi \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\ A_r & rA_\theta & (r \sin \theta) A_\phi \end{vmatrix}$$

Examples on Curl Calculation

Given $\mathbf{A} = \mathbf{e}^{xy} \mathbf{a}_x + \sin xy \mathbf{a}_y + \cos^2(xz) \mathbf{a}_z$

$$\nabla \times \mathbf{A} = \begin{vmatrix} a_x & a_y & a_z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ e^{xy} & \sin xy & \cos^2(xz) \end{vmatrix}$$

$$\nabla \mathbf{x} \mathbf{A} = \mathbf{a}_{\mathbf{x}} \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \right) + \mathbf{a}_{\mathbf{y}} \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \right) + \mathbf{a}_{\mathbf{z}} \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right)$$

 $\nabla \mathbf{x} \mathbf{A} = \mathbf{a}_{\mathbf{x}} (0 - 0) + \mathbf{a}_{\mathbf{y}} (0 + 2z \cos xz \sin xz) + \mathbf{a}_{\mathbf{z}} (y \cos xy - xe^{xy})$

$$\nabla \mathbf{x} \mathbf{A} = \mathbf{a}_{\mathbf{y}} (z \sin 2xz) + \mathbf{a}_{\mathbf{z}} (y \cos xy - xe^{xy})$$

- The Laplacian of a scalar field V, written as ∇²V is defined as the divergence of the gradient of V.
- In Cartesian coordinates,

$$\nabla^{2} \mathbf{V} = \frac{\partial^{2} \mathbf{V}}{\partial \mathbf{x}^{2}} + \frac{\partial^{2} \mathbf{V}}{\partial \mathbf{y}^{2}} + \frac{\partial^{2} \mathbf{V}}{\partial \mathbf{z}^{2}}$$

Laplacian of a scalar

In cylindrical coordinates,

$$\nabla^{2}V = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial V}{\partial \rho}\right) + \frac{1}{\rho^{2}} \frac{\partial^{2}V}{\partial \phi^{2}} + \frac{\partial^{2}V}{\partial z^{2}}$$

In spherical coordinates,

$$\nabla^{2} \mathbf{V} = \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial \mathbf{V}}{\partial r} \right) + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \mathbf{V}}{\partial \theta} \right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2} \mathbf{V}}{\partial \phi^{2}}$$