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Scalar 

 Scalar: A quantity that has only magnitude.  

 For example time, mass, distance, temperature 

and population are scalars. 

 Scalar is represented by a letter – e.g., A, B 

 

 



Vector 

 Vector: A quantity that has both magnitude and 

direction.  

 Example: Velocity, force, displacement and 

electric field intensity. 

 Vector is represent by a letter such as A, B,       

or  

 It can also be written as   

   where A is       which is the magnitude and     is 

unit vector 
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Unit Vector 

 A unit vector along A is defined as a vector whose 
magnitude is unity (i.e., 1) and its direction is 
along A.  

 

 It can be written as aA or 
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Vector Addition 

 The sum of two vectors for example vectors A 

and B can be obtain by moving one of them so 

that its terminal point (tip) coincides with the 

initial point (tail) of the other 
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Vector Subtraction 

 Vector subtraction is similarly carried out as        

 D = A – B = A + (-B) 
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 Figure (a) 

Figure (b) 

Figure (c) 

Figure (c) shows that vector D is a 
vector that is must be added to B to 
give vector A 

So if vector A and B are placed tail to 
tail then vector D is a vector that runs 

from the tip of B to A. 

A

B


BA




A

BA




B






Vector multiplication 

 Scalar (dot ) product (A•B) 

 

 Vector (cross) product (A X B) 

 

 Scalar triple product A • (B X C) 

 

 Vector triple product A X (B X C) 

 

 



Multiplication of a vector by a 

scalar 

 Multiplication of a scalar k to a vector A gives a vector 

that points in the same direction as A and magnitude 

equal to |kA| 

 

 

 

 

 

 The division of a vector by a scalar quantity is a 

multiplication of the vector by the reciprocal of the 

scalar quantity. 
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Scalar Product 

 The dot product of two vectors      and     , written as            

      is defined as the product of the magnitude of      

and       , and the projection of      onto      (or vice versa).  

 Thus ;  

 

  

  

 Where θ  is the angle between      and     . The result of dot 

product is a scalar quantity. 
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Vector Product 

 The cross (or vector) product of two vectors A 
and B, written as is defined as 

 

   

  

   where;    a unit vector perpendicular to the plane 
that contains the two vectors. The direction of     
is taken as the direction of the right thumb (using 
right-hand rule) 

 

 The product of cross product is a vector 
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Right-hand Rule 



 A direct application of vector product is in determining 
the projection (or component) of a vector in a given 

direction. The projection can be scalar or vector. 

 

  Given a vector A, we define the scalar component 

AB of A along vector B as 

    AB = A cos θAB = |A||aB| cos θAB   

 or   AB = A·aB 

Components of a vector 



Dot product 

If                   and                then 

 

            

 which is obtained by multiplying A and B 

component by component. 

 

 It follows that modulus of a vector is 
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Cross Product 

  If A=(Ax, Ay, Az), B=(Bx, By, Bz) then  
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Cross Product 

 Cross product of the unit vectors yield: 
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Example 1 

 Given three vectors P =            

              Q =            

              R =  

Determine  

a) (P+Q) X (P-Q) 

b) Q•(R X P) 
c) P•(Q X R) 
d)   

e) P X( Q X R) 

f) A unit vector perpendicular to both Q and R 
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Solution  



Solution (cont’) 



To find the determinant of a 3 X 3 matrix, we repeat the first two rows 

and cross multiply; when the cross multiplication is from right to left, the 
result should be negated as shown below. This technique of finding a 
determinant applies only to a 3 X 3 matrix. Hence 

Solution (cont’) 



Solution (cont’) 



 

Solution (cont’) 



Solution (cont’) 



Cylindrical Coordinates 

 Very convenient when dealing with problems having 
cylindrical symmetry. 

 

 A point P in cylindrical coordinates is represented as 
(ρ, Φ, z) where  

ρ: is the radius of the cylinder; radial displacement 
 from the z-axis 

Φ: azimuthal angle or the angular displacement 

from x-axis  

z : vertical displacement z from the origin (as in the 
 cartesian system).  
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Cylindrical Coordinates 



Cylindrical Coordinates 

 The range of the variables are 

     0 ≤ ρ < ∞,  0 ≤ Φ < 2π , -∞ < z < ∞ 

 

 vector     in cylindrical coordinates can be 
written as   (Aρ,Aφ, Az)  or  Aρaρ + Aφaφ + Azaz 

 

 The magnitude of      is 
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Relationships Between 

Variables 

 The relationships between the variables (x,y,z) of the 

Cartesian coordinate system and the cylindrical system 

(ρ, φ , z) are obtained as 

  

 

 

 

 So a point P (3, 4, 5) in Cartesian coordinate is the 

same as?  
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Relationships Between 

Variables 

 

 

 

 

 

 

 So a point P (3, 4, 5) in Cartesian coordinate is the 

same as P ( 5, 0.927,5) in cylindrical coordinate) 
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Spherical Coordinates 

(r,θ,φ)  

 The spherical coordinate system is used 
dealing with problems having a degree of 
spherical symmetry. 

 

 Point P represented as (r,θ,φ) where  
 r  : the distance from the origin,  

 θ : called the colatitude is the angle between z-axis 
 and vector of P,  

 Φ : azimuthal angle or the angular displacement 
 from x-axis (the same azimuthal angle in 
 cylindrical coordinates). 



Spherical Coordinates 



 The range of the variables are 

 0 ≤ r < ∞,  0 ≤ θ < π , 0 < φ < 2π 

 

 A vector A in spherical coordinates written as 

  (Ar,Aθ,Aφ) or Arar + Aθaθ + Aφaφ 

 

 The magnitude of A is 
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Spherical Coordinates 

(r,θ,φ)  



Relation to Cartesian 

coordinates system 
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Relationship between cylinder 

and spherical coordinate 

system  



Point transformation between cylinder and spherical 

coordinate is given by 

 

 

 

 

or 

 

 

 

Point transformation 

22
zr  

z

 1tan  

 sinr cosrz   

   



Express vector B = 

 

in Cartesian and cylindrical coordinates. Find B at 

(-3, 4 0) and at (5, π/2, -2) 
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Differential Elements  

  In vector calculus the differential elements in 

length, area and volume are useful. 

 

 They are defined in the Cartesian, cylindrical 

and spherical coordinate 



Cartesian Coordinates 
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Differential displacement :  zyx dzadyadxald 


Differential elements 



z

y

x

dxdySd

dxdzSd

dydzSd

a

a

a













Differential normal area: 

Cartesian Coordinates 

Differential elements 



Differential 

displacement 

Differential 

normal area 

Differential 

volume 
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dxdydzdv 

Cartesian Coordinates 

Differential elements 



Cylindrical Coordinates 

Differential displacement :  zdzddld aaa   


Differential elements 



Differential normal area: 
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Cylindrical Coordinates 

Differential elements 



 

    

 

 

 

 

 

 

    

Differential 

displacement 

Differential normal 

area 

Differential volume 
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Cylindrical Coordinates 

Differential elements 



Spherical Coordinates 

 drd sin

Differential displacement :    adrarddrald r sin


Differential elements 
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Differential normal area: 

Spherical Coordinates 

Differential elements 



Differential 

displacement 

Differential 

normal area 

Differential 

volume 

  adrarddrald r sin
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Spherical Coordinates 

Differential elements 



  1. The gradient of a scalar V, written as     V 

2. The divergence of a vector A, written as 

3. The curl of a vector A, written as  

4. The Laplacian of a scalar V, written as   

 Written as     is the vector differential operator. Also 
known as the gradient operator. The operator in useful 
in defining: 
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 G is the gradient of V. Thus 

 

 

 In cylindrical coordinates, 

 

 

 

 In spherical coordinates, 
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Gradient of Scalar 



Example : 



Divergence 

 In Cartesian coordinates,       

 

 

 In  cylindrical coordinates, 

 

 

 In spherical coordinate,      
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Example 



 In Cartesian coordinates,  

 

 

 

 

 In cylindrical coordinates, 
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Curl of a Vector 
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Curl of a Vector 

 In spherical coordinates, 
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Examples on Curl Calculation 
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Laplacian of a scalar 

 The Laplacian of a scalar field V, written as ∇2V is 
defined as the divergence of the gradient of V. 

 

 In Cartesian coordinates, 
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 In cylindrical coordinates, 

 

 

 

 

 In spherical coordinates, 
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Laplacian of a scalar 
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