FEMT

 Unit1:
Vector Fields

Scalar

- Scalar: A quantity that has only magnitude.
- For example time, mass, distance, temperature and population are scalars.
- Scalar is represented by a letter - e.g., A, B

Vector

- Vector: A quantity that has both magnitude and direction.
- Example: Velocity, force, displacement and electric field intensity.
- Vector is represent by a letter such as $\mathbf{A}, \mathbf{B}, \vec{A}$ or $\vec{\psi}$
- It can also be written as $\vec{A}=A \hat{a}$ where A is $|\vec{A}|$ which is the magnitude and \hat{a} is unit vector

Unit Vector

- A unit vector along \mathbf{A} is defined as a vector whose magnitude is unity (i.e., 1) and its direction is along A.
- It can be written as \mathbf{a}_{A} or
\hat{a}

$$
a_{A}=\frac{A}{|\vec{A}|}=\frac{A}{\vec{A}}
$$

Thus

$$
A=\vec{A} a_{A}
$$

Vector Addition

The sum of two vectors for example vectors A and B can be obtain by moving one of them so that its terminal point (tip) coincides with the initial point (tail) of the other

Vector Subtraction

- Vector subtraction is similarly carried out as

$$
\mathbf{D}=\mathbf{A}-\mathbf{B}=\mathbf{A}+(-\mathbf{B})
$$

$-\vec{B}$

Figure (a)

Figure (c)

Figure (c) shows that vector \mathbf{D} is a
$-\vec{B}$

Figure (b)
vector that is must be added to \mathbf{B} to give vector A
So if vector \mathbf{A} and \mathbf{B} are placed tail to tail then vector \mathbf{D} is a vector that runs from the tip of \mathbf{B} to \mathbf{A}.

Vector multiplication

- Scalar (dot) product (A•B)
- Vector (cross) product (AXB)

Scalar triple product A • (B X C)

- Vector triple product AX(BXC)

Multiplication of a vector by a scalar

- Multiplication of a scalar k to a vector \mathbf{A} gives a vector that points in the same direction as \mathbf{A} and magnitude equal to $|k A|$

- The division of a vector by a scalar quantity is a multiplication of the vector by the reciprocal of the scalar quantity.

Scalar Product

- The dot product of two vectors \vec{A} and \vec{B}, written as $\vec{A} \bullet \vec{B}$ is defined as the product of the magnitude of \vec{A} and \vec{B}, and the projection of \vec{A} onto \vec{B} (or vice versa).
Thus ;

$$
\vec{A} \bullet \vec{B}=|A \| B| \cos \theta
$$

Where θ is the angle between \vec{A} and \vec{B}. The result of dot product is a scalar quantity.

Vector Product

The cross (or vector) product of two vectors A and B, written as is defined as

$$
\vec{A} \times \vec{B}=|A||B| \sin \theta_{A B} \hat{n}
$$

where; \hat{n} a unit vector perpendicular to the plane that contains the two vectors. The direction of n is taken as the direction of the right thumb (using right-hand rule)

The product of cross product is a vector

Right-hand Rule

Components of a vector

- A direct application of vector product is in determining the projection (or component) of a vector in a given direction. The projection can be scalar or vector.
- Given a vector \mathbf{A}, we define the scalar component AB of \mathbf{A} along vector \mathbf{B} as
$A_{B}=A \cos \theta_{A B}=|A|\left|a_{B}\right| \cos \theta_{A B}$
or $A_{B}=\boldsymbol{A} \cdot \boldsymbol{a}_{B}$

Dot product

If $\vec{A}=\left(A_{x}, A_{y}, A_{z}\right)$ and $\vec{B}=\left(B_{x}, B_{y}, B_{z}\right)$ then

$$
\vec{A} \bullet \vec{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
$$

which is obtained by multiplying A and B component by component.

- It follows that modulus of a vector is

$$
|\vec{A}|=\sqrt{\vec{A} \bullet \vec{A}}=\sqrt{A_{x}{ }^{2}+A_{y}{ }^{2}+A_{z}^{2}}
$$

Cross Product

- If $A=\left(A_{x}, A_{y}, A_{z}\right), B=\left(B_{x}, B_{y}, B_{z}\right)$ then
$\vec{A} \times \vec{B}=\left|\begin{array}{ccc}a_{x} & a_{y} & a_{z} \\ A_{x} & A_{y} & A_{z} \\ B_{x} & B_{y} & B_{z}\end{array}\right|$

$$
\begin{aligned}
& =\left|\begin{array}{cc}
A_{y} & A_{z} \\
\boldsymbol{B}_{y} & \boldsymbol{B}_{z}
\end{array}\right| a_{x}+\left|\begin{array}{cc}
A_{z} & A_{x} \\
\boldsymbol{B}_{z} & \boldsymbol{B}_{x}
\end{array}\right| a_{y}+\left|\begin{array}{cc}
A_{x} & A_{y} \\
\boldsymbol{B}_{x} & \boldsymbol{B}_{y}
\end{array}\right| a_{z} \\
& =\left(A_{y} B_{z}-A_{z} B_{y}\right) a_{x}+\left(A_{z} B_{x}-A_{x} B_{z}\right) a_{y}+\left(A_{x} B_{y}-A_{y} B_{x}\right) a_{z}
\end{aligned}
$$

Cross Product

Cross product of the unit vectors yield:

$$
\begin{aligned}
& \mathbf{a}_{\mathbf{x}} \times \mathbf{a}_{\mathbf{y}}=\mathbf{a}_{\mathbf{z}} \\
& \mathbf{a}_{\mathbf{y}} \times \mathbf{a}_{\mathbf{z}}=\mathbf{a}_{\mathbf{x}} \\
& \mathbf{a}_{\mathbf{z}} \times \mathbf{a}_{\mathbf{a}}=\mathbf{a}_{\mathbf{y}}
\end{aligned}
$$

Example 1

Given three vectors $\mathbf{P}=2 a_{x}-a_{z}$

$$
\begin{aligned}
& \mathbf{Q}=2 a_{x}-a_{y}+2 a_{z} \\
& \mathbf{R}=2 a_{x}-3 a_{y}+a_{z}
\end{aligned}
$$

Determine
a) $(P+Q) X(P-Q)$
b) $Q \bullet(R X P)$
c) $\mathbf{P} \cdot(\mathbf{Q} \times \mathrm{R})$
d) $\sin \theta_{Q R}$
e) $P \times(Q \times R)$
f) A unit vector perpendicular to both \mathbf{Q} and \mathbf{R}

Solution

(a)

$$
\begin{aligned}
(\mathbf{P}+\mathbf{Q}) \times(\mathbf{P}-\mathbf{Q}) & =\mathbf{P} \times(\mathbf{P}-\mathbf{Q})+\mathbf{Q} \times(\mathbf{P}-\mathbf{Q}) \\
& =\mathbf{P} \times \mathbf{P}-\mathbf{P} \times \mathbf{Q}+\mathbf{Q} \times \mathbf{P}=\mathbf{Q} \times \mathbf{Q} \\
& =0+\mathbf{Q} \times \mathbf{P}+\mathbf{Q} \times \mathbf{P}-0 \\
& =2 \mathbf{Q} \times \mathbf{P} \\
& =2\left|\begin{array}{rrr}
\mathbf{a}_{x} & \mathbf{a}_{y} & \mathbf{a}_{z} \\
2 & -1 & 2 \\
2 & 0 & -1
\end{array}\right| \\
& =2(1-0) \mathbf{a}_{x}+2(4+2) \mathbf{a}_{y}+2(0+2) \mathbf{a}_{z} \\
& =2 \mathbf{a}_{x}+12 \mathbf{a}_{y}+4 \mathbf{a}_{z}
\end{aligned}
$$

Solution (cont')

(b) The only way $\mathbf{Q} \cdot \mathbf{R} \times \mathbf{P}$ makes sense is

$$
\begin{aligned}
\mathbf{Q} \cdot(\mathbf{R} \times \mathbf{P}) & =(2,-1,2) \cdot\left|\begin{array}{ccc}
\mathbf{a}_{x} & \mathbf{a}_{y} & \mathbf{a}_{z} \\
2 & -3 & 1 \\
2 & 0 & -1
\end{array}\right| \\
& =(2,-1,2) \cdot(3,4,6) \\
& =6-4+12=14
\end{aligned}
$$

Alternatively:

$$
\mathbf{Q} \cdot(\mathbf{R} \times \mathbf{P})=\left|\begin{array}{rrr}
2 & -1 & 2 \\
2 & -3 & 1 \\
2 & 0 & -1
\end{array}\right|
$$

Solution (cont')

To find the determinant of a 3×3 matrix, we repeat the first two rows and cross multiply; when the cross multiplication is from right to left, the result should be negated as shown below. This technique of finding a determinant applies only to a 3 X 3 matrix. Hence

$$
\begin{aligned}
& =+6+0-2+12-0-2 \\
& =14
\end{aligned}
$$

Solution (cont')

(c) From eq. (1.28)

$$
\mathbf{P} \cdot(\mathbf{Q} \times \mathbf{R})=\mathbf{Q} \cdot(\mathbf{R} \times \mathbf{P})=14
$$

or

$$
\begin{aligned}
\mathbf{P} \cdot(\mathbf{Q} \times \mathbf{R}) & =(2,0,-1) \cdot(5,2,-4) \\
& =10+0+4 \\
& =14
\end{aligned}
$$

(d)

$$
\begin{aligned}
\sin \theta_{Q R} & =\frac{|\mathbf{Q} \times \mathbf{R}|}{|\mathbf{Q}||\mathbf{R}|}=\frac{|(5,2,-4)|}{|(2,-1,2)||(2,-3,1)|} \\
& =\frac{\sqrt{45}}{3 \sqrt{14}}=\frac{\sqrt{5}}{\sqrt{14}}=0.5976
\end{aligned}
$$

Solution (cont')

(e)

$$
\begin{aligned}
\mathbf{P} \times(\mathbf{Q} \times \mathbf{R}) & =(2,0,-1) \times(5,2,-4) \\
& =(2,3,4)
\end{aligned}
$$

Alternatively, using the bac-cab rule,

$$
\begin{aligned}
\mathbf{P} \times(\mathbf{Q} \times \mathbf{R}) & =\mathbf{Q}(\mathbf{P} \cdot \mathbf{R})-\mathbf{R}(\mathbf{P} \cdot \mathbf{Q}) \\
& =(2,-1,2)(4+0-1)-(2,-3,1)(4+0-2) \\
& =(2,3,4)
\end{aligned}
$$

(f) A unit vector perpendicular to both \mathbf{Q} and \mathbf{R} is given by

$$
\begin{aligned}
\mathbf{a} & =\frac{ \pm \mathbf{Q} \times \mathbf{R}}{|\mathbf{Q} \times \mathbf{R}|}=\frac{ \pm(5,2,-4)}{\sqrt{45}} \\
& = \pm(0.745,0.298,-0.596)
\end{aligned}
$$

Note that $|\mathbf{a}|=1, \mathbf{a} \cdot \mathbf{Q}=0=\mathbf{a} \cdot \mathbf{R}$. Any of these can be used to check \mathbf{a}.

Solution (cont')

(g) The component of \mathbf{P} along \mathbf{Q} is

$$
\begin{aligned}
\mathbf{P}_{Q} & =|\mathbf{P}| \cos \theta_{P Q} \mathbf{a}_{Q} \\
& =\left(\mathbf{P} \cdot \mathbf{a}_{Q}\right) \mathbf{a}_{Q}=\frac{(\mathbf{P} \cdot \mathbf{Q}) \mathbf{Q}}{|\mathbf{Q}|^{2}} \\
& =\frac{(4+0-2)(2,-1,2)}{(4+1+4)}=\frac{2}{9}(2,-1,2) \\
& =0.4444 \mathbf{a}_{x}-0.2222 \mathbf{a}_{y}+0.4444 \mathbf{a}_{z} .
\end{aligned}
$$

Cylindrical Coordinates

- Very convenient when dealing with problems having cylindrical symmetry.
- A point P in cylindrical coordinates is represented as (ρ, Φ, z) where
ρ : is the radius of the cylinder; radial displacement from the z-axis
©: azimuthal angle or the angular displacement from x-axis
z : vertical displacement z from the origin (as in the cartesian system).

Cylindrical Coordinates

Cylindrical Coordinates

- The range of the variables are

$$
0 \leq \rho<\infty, 0 \leq \Phi<2 \pi,-\infty<z<\infty
$$

- vector \vec{A} in cylindrical coordinates can be written as $\left(A_{\rho}, A_{\phi}, A_{z}\right)$ or $A_{\rho} a_{\rho}+A_{\phi} a_{\phi}+A_{z} a_{z}$

The magnitude of \vec{A} is

$$
|\vec{A}|=\sqrt{A_{\rho}^{2}+A_{\phi}^{2}+A_{z}^{2}}
$$

Relationships Between Variables

The relationships between the variables (x, y, z) of the Cartesian coordinate system and the cylindrical system ($\rho, \varphi, \mathrm{z}$) are obtained as

$$
\begin{array}{ll}
\rho=\sqrt{x^{2}+y^{2}} & x=\rho \cos \phi \\
\phi=\tan ^{-1} y / x & y=\rho \sin \phi \\
z=z & z=z
\end{array}
$$

- So a point $P(3,4,5)$ in Cartesian coordinate is the same as?

Relationships Between Variables

$$
\begin{aligned}
& \rho=\sqrt{3^{2}+4^{2}}=5 \\
& \phi=\tan ^{-1} 4 / 3=0.927 \mathrm{rad} \\
& z=5
\end{aligned}
$$

So a point $P(3,4,5)$ in Cartesian coordinate is the same as $P(5,0.927,5)$ in cylindrical coordinate)

The spherical coordinate system is used dealing with problems having a degree of spherical symmetry.

- Point P represented as (r, θ, φ) where
r : the distance from the origin,
θ : called the colatitude is the angle between z -axis and vector of P,
- : azimuthal angle or the angular displacement from x-axis (the same azimuthal angle in cylindrical coordinates).

Spherical Coordinates

Spherical Coordinates ($r, \boldsymbol{\theta}, \varphi$)

The range of the variables are $0 \leq r<\infty, 0 \leq \theta<\pi, 0<\varphi<2 \pi$

- A vector \mathbf{A} in spherical coordinates written as

$$
\left(\mathrm{A}_{r}, \mathrm{~A}_{\theta}, \mathrm{A}_{\varphi}\right) \text { or } \mathrm{A}_{r} \mathrm{a}_{r}+\mathrm{A}_{\theta} \mathrm{a}_{\theta}+\mathrm{A}_{\varphi} \mathrm{a}_{\varphi}
$$

The magnitude of A is

$$
|\vec{A}|=\sqrt{A_{r}^{2}+A_{\phi}^{2}+A_{\theta}^{2}}
$$

Relation to Cartesian coordinates system

$$
r=\sqrt{x^{2}+y^{2}+z^{2}}
$$

$$
\theta=\tan ^{-1} \underline{\left(\sqrt{x^{2}+y^{2}}\right)}
$$

$$
z
$$

$$
\begin{aligned}
& x=r \sin \theta \cos \phi \\
& y=r \sin \theta \sin \phi \\
& z=r \cos \theta
\end{aligned}
$$

$\phi=\tan ^{-1} \frac{y}{x}$

Relationship between cylinder and spherical coordinate

 system

Point transformation

Point transformation between cylinder and spherical coordinate is given by

$$
r=\sqrt{\rho^{2}+z^{2}}
$$

$$
\theta=\tan ^{-1} \frac{\rho}{z}
$$

$$
\phi=\phi
$$

or

$$
\rho=r \sin \theta \quad z=r \cos \theta \quad \phi=\phi
$$

Example

Express vector $\mathbf{B}=\frac{10}{r} \mathbf{a}_{r}+r \cos \theta \mathbf{a}_{\theta}+\mathbf{a}_{\phi}$
in Cartesian and cylindrical coordinates. Find \mathbf{B} at $(-3,40)$ and at (5, $\pi / 2,-2)$

Differential Elements

- In vector calculus the differential elements in length, area and volume are useful.

They are defined in the Cartesian, cylindrical and spherical coordinate

Differential elements

Cartesian Coordinates

Differential displacement :

$$
d \vec{l}=d x a_{x}+d y a_{y}+d z a_{z}
$$

Differential elements

Cartesian Coordinates

(a)

(b)

(c)

Differential normal area:

$$
\begin{aligned}
& d \vec{S}=d x d z \mathbf{a}_{y} \\
& d \vec{S}=d x d y \mathbf{a}_{z}
\end{aligned}
$$

Differential elements

Cartesian Coordinates

Differential displacement	$d \vec{l}=d x \mathbf{a}_{x}+d y \mathbf{a}_{y}+d z \mathbf{a}_{z}$
Differential normal area	$d \vec{S}=d y d z \mathbf{a}_{x}$ $d \vec{S}=d x d z \mathbf{a}_{y}$ $d \vec{S}=d x d y \mathbf{a}_{z}$
Differential volume	$d v=d x d y d z$

Differential elements

Cylindrical Coordinates

Differential displacement : $d \vec{l}=d \rho \mathbf{a}_{\rho}+\rho d \phi \mathbf{a}_{\phi}+d z \mathbf{a}_{z}$

Differential elements

Cylindrical Coordinates

(a)

(b)

(c)

Differential normal area:

$$
\begin{aligned}
& d \vec{S}=\rho d \phi d z a_{\rho} \\
& d \vec{S}=d \rho d z a_{\phi} \\
& d \vec{S}=\rho d \phi d \rho a_{z}
\end{aligned}
$$

Differential elements

Cylindrical Coordinates

Differential displacement	$d \vec{l}=d \rho a_{\rho}+\rho d \phi a_{\phi}+d z a_{z}$
Differential normal area	$d \vec{S}=\rho d \phi d z a_{\rho}$
$d \vec{S}=d \rho d z a_{\phi}$	
	$d \vec{S}=\rho d \phi d \rho a_{z}$

Differential elements

Spherical Coordinates

Differential displacement : $d \vec{l}=d r a_{r}+r d \theta a_{\theta}+r \sin \theta d \phi a_{\phi}$

Differential elements

Spherical Coordinates

Differential normal area: $\quad d \vec{S}=r \sin \theta d r d \phi \mathbf{a}_{\theta}$
$d \vec{S}=r d r d \theta \mathbf{a}_{\phi}$

Differential elements

Spherical Coordinates

Differential displacement
Differential normal area

$$
\begin{gathered}
d \vec{l}=d r a_{r}+r d \theta a_{\theta}+r \sin \theta d \phi a_{\phi} \\
d \vec{S}=r^{2} \sin \theta d \theta d \phi a_{r} \\
d \vec{S}=r \sin \theta d r d \phi a_{\theta} \\
d \vec{S}=r d r d \theta a_{\phi}
\end{gathered}
$$

Differential volume
$d v=r^{2} \sin \theta d r d \theta d \phi$

Del Operator

- Written as ∇ is the vector differential operator. Also known as the gradient operator. The operator in useful in defining:

1. The gradient of a scalar V , written as $\nabla \mathrm{V}$
2. The divergence of a vector \mathbf{A}, written as $\nabla \bullet \mathbf{A}$
3. The curl of a vector \mathbf{A}, written as $\nabla \times \mathbf{A}$
4. The Laplacian of a scalar V , written as

Gradient of Scalar

G is the gradient of V . Thus

$$
\operatorname{grad} V=\nabla V=\frac{\partial V}{\partial x} a_{x}+\frac{\partial V}{\partial y} a_{y}+\frac{\partial V}{\partial z} a_{z}
$$

- In cylindrical coordinates,

$$
\nabla \mathbf{V}=\frac{\partial \mathbf{V}}{\partial \rho} \mathbf{a}_{\rho}+\frac{1}{\rho} \frac{\partial \mathbf{V}}{\partial \phi} \mathbf{a}_{\phi}+\frac{\partial \mathbf{V}}{\partial z} \mathbf{a}_{z}
$$

- In spherical coordinates,

$$
\nabla V=\frac{\partial V}{\partial r} \mathbf{a r}_{r}+\frac{1}{r} \frac{\partial V}{\partial \theta} \mathbf{a}_{\theta}+\frac{1}{\mathrm{r} \sin \theta} \frac{\partial V}{\partial \phi} \mathbf{a}_{\phi}
$$

Example:

Given: $U=r^{2} z \cos 2 \phi$
$\nabla U=\frac{\partial U}{\partial r} \mathbf{a}_{\mathbf{r}}+\frac{\partial U}{r \partial \phi} \mathbf{a}_{\phi}+\frac{\partial U}{\partial Z} \mathbf{a}_{\mathbf{z}}$
$2 r z \cos 2 \phi \mathbf{a}_{\mathbf{r}}-2 \mathrm{rzsin} 2 \phi \mathbf{a}_{\phi}+\mathrm{r}^{2} \cos 2 \phi \mathbf{a}_{\boldsymbol{z}}$

Given: $\mathrm{W}=10 \mathrm{R} \sin ^{2} \theta \cos \phi$
$\nabla W=\frac{\partial W}{\partial R} \mathbf{a}_{\mathbf{R}}+\frac{\partial W}{R \partial \theta} \mathbf{a}_{\theta}+\frac{\partial W}{R \sin \theta \partial \phi} \mathbf{a}_{\phi}$
$=10 \sin ^{2} \theta \cos \phi \mathbf{a}_{\mathbf{R}}+10 \sin 2 \theta \cos \phi \mathbf{a}_{\theta}-10 \sin \theta \sin \phi \mathbf{a}_{\phi}$

Divergence

- In Cartesian coordinates,

$$
\nabla \bullet \mathbf{A}=\frac{\partial A_{x}}{\partial_{x}}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial_{z}}
$$

- In cylindrical coordinates,
$\nabla \bullet \mathbf{A}=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho A_{\rho}\right)+\frac{1}{\rho} \frac{\partial A_{\phi}}{\partial \phi}+\frac{\partial A_{z}}{\partial z}$
In spherical coordinate,
$\nabla \bullet A=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} A_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(A_{\theta} \sin \theta\right)+\frac{1}{r \sin \theta} \frac{\partial A_{\phi}}{\partial \phi}$

Example

Given : $\mathbf{P}=\mathrm{x}^{2} \mathrm{yz} \mathbf{a}_{\mathbf{x}}+\mathrm{xz} \mathbf{a}_{\mathbf{z}}$

$$
\begin{aligned}
& \nabla \cdot \mathbf{P}=\frac{\partial}{\partial x} P_{x}+\frac{\partial}{\partial y} P_{y}+\frac{\partial}{\partial z} P_{z} \\
& =\frac{\partial}{\partial x}\left(x^{2} y z\right)+\frac{\partial}{\partial y}(0)+\frac{\partial}{\partial z}(x z) \\
& =2 \mathrm{xyz}+\mathrm{x}
\end{aligned}
$$

Curl of a Vector

- In Cartesian coordinates,

$$
\nabla \times \boldsymbol{A}=\left|\begin{array}{ccc}
\mathbf{a}_{x} & \mathbf{a}_{y} & \mathbf{a}_{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\boldsymbol{A}_{x} & \boldsymbol{A}_{y} & \boldsymbol{A}_{z}
\end{array}\right|
$$

- In cylindrical coordinates,

$$
\nabla \times \mathbf{A}=\frac{1}{\rho}\left|\begin{array}{ccc}
a_{\rho} & \rho a_{\phi} & a_{z} \\
\frac{\partial}{\partial \rho} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial z} \\
A_{\rho} & \rho A_{\phi} & A_{z}
\end{array}\right|
$$

Curl of a Vector

In spherical coordinates,

$$
\nabla \times \mathbf{A}=\frac{1}{r^{2} \sin \theta}\left|\begin{array}{lll}
a_{r} & r a_{\theta} & (r \sin \theta) a_{\phi} \\
\frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\
A_{r} & r A_{\theta} & (r \sin \theta) A_{\phi}
\end{array}\right|
$$

Examples on Curl Calculation

Given $\mathbf{A}=\mathrm{e}^{\mathrm{xy}} \mathbf{a}_{\mathrm{x}}+\sin \mathrm{xy} \mathbf{a}_{\mathrm{y}}+\cos ^{2}(\mathrm{xz}) \mathbf{a}_{\mathrm{z}}$

$$
\begin{gathered}
\nabla \times \mathbf{A}=\left|\begin{array}{ccc}
a_{x} & a_{y} & a_{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
e^{x y} & \sin x y & \cos ^{2}(x z)
\end{array}\right| \\
\nabla \mathbf{x A}=\mathbf{a}_{\mathbf{x}}\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right)+\mathbf{a}_{\mathbf{y}}\left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right)+\mathbf{a}_{\mathbf{z}}\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right)
\end{gathered}
$$

$$
\nabla \mathbf{x A}=\mathbf{a}_{\mathbf{x}}(0-0)+\mathbf{a}_{\mathbf{y}}(0+2 z \cos x z \sin x z)+\mathbf{a}_{\mathbf{z}}\left(y \cos x y-x e^{x y}\right)
$$

$$
\nabla \mathbf{x} \mathbf{A}=\mathbf{a}_{\mathbf{y}}(z \sin 2 x z)+\mathbf{a}_{\mathbf{z}}\left(y \cos x y-x e^{x y}\right)
$$

Laplacian of a scalar

The Laplacian of a scalar field V , written as $\nabla^{2} \mathrm{~V}$ is defined as the divergence of the gradient of V.

- In Cartesian coordinates,

$$
\nabla^{2} \mathrm{~V}=\frac{\partial^{2} \mathrm{~V}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \mathrm{~V}}{\partial \mathrm{y}^{2}}+\frac{\partial^{2} \mathrm{~V}}{\partial \mathrm{z}^{2}}
$$

Laplacian of a scalar

- In cylindrical coordinates,

$$
\nabla^{2} V=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial V}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} V}{\partial \phi^{2}}+\frac{\partial^{2} V}{\partial z^{2}}
$$

- In spherical coordinates,

$$
\nabla^{2} \mathrm{~V}=\frac{1}{\mathrm{r}^{2}} \frac{\partial}{\partial \mathrm{r}}\left(\mathrm{r}^{2} \frac{\partial \mathrm{~V}}{\partial \mathrm{r}}\right)+\frac{1}{\mathrm{r}^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \mathrm{~V}}{\partial \theta}\right)+\frac{1}{\mathrm{r}^{2} \sin ^{2} \theta} \frac{\partial^{2} \mathrm{~V}}{\partial \phi^{2}}
$$

