FEMT Unit-2

Conductor, Semiconductor, Dielectric and Boundary Conditions

Review (1)

The *electric potential difference* V_{ba} is a work done by an external force to move a charge from point *a* to point *b* in an electric field divided by the amount of charge moved.

 $V_{ba} = \frac{W}{Q} = -\int_{a}^{b} \vec{E} \Box d\vec{L}$ The electric potential is the same no matter which routes are used. Only displacement distance (shortest route) matters

Review (2)

- Conductors and Ohm's law
 - **Current, I** is defined as the amount of charge that passes through a reference plane in a given amount of time.

$$I = \frac{dQ}{dt}$$
 Ampere.

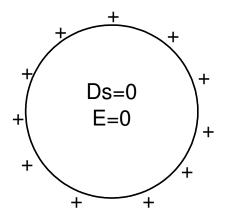
- **Current density, J** is defined as the amount of current per unit area $\Delta I = \vec{J} \Box \Delta \vec{S}$ A/m²
- the relationship between I and J, $I = \int J \Box \Delta S$
- convection current $\vec{J} = \rho_v \vec{v}$
- conduction current $\vec{J} = \sigma \vec{E}$

Outline

- Conductor and boundary conditions
- Semiconductor and insulator

Conductors and boundary conditions

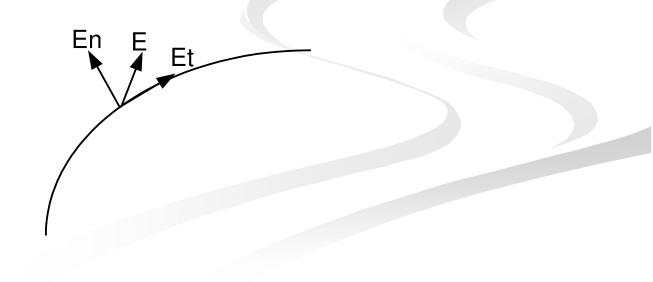
- charge density is zero inside a conductor
- Surface charge density D_S is on the conductor surface
- An electric field inside a conductor is zero



outside charges cause and electric field.

Tangential and normal fields.

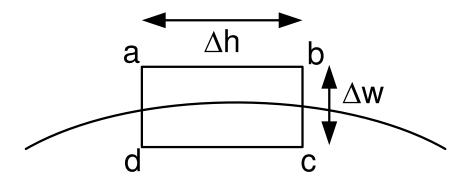
- The electric field on the surface can be divided into two components.
 - tangential electric field, $E_{p} = 0$ for an equipotential surface
 - normal electric field, E_n



Boundary conditions (1)

Consider a conductor-free space boundary

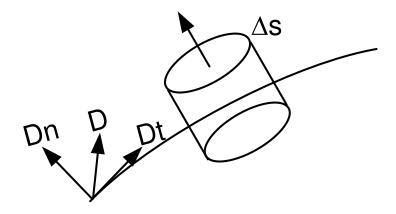
From $\[\]\vec{E} \square d\vec{l} = 0$



Boundary conditions (3)

Consider Gauss's law

From
$$\[\] \vec{D} \square d\vec{S} = Q$$



Boundary conditions (3)

• For conductor-free space boundary conditions (B.Cs.)

$$D_t = E_t = 0$$

$$D_n = \varepsilon_0 E_n = \rho_s$$

Ex1 Let $V = 100e^{-5x} \sin(3y)\cos(4z)$ V and let a point $P(0.1, \pi/12, \pi/24)$ locate at the conductor-free space boundary. At point P, determine

a) V

b) E

c) E_n

d) E_t

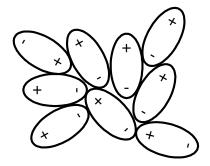
e) ρ_S

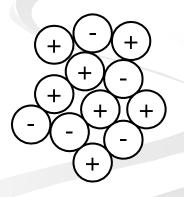
Semiconductors

- Electron and hole currents
- conductivity $\sigma = -\rho_e \mu_e + \rho_h \mu_h$
- mobility is 10-100 times higher than conductor.
- electron and hole density depend on temperature.
- Doping is the process of adding impurities to a semiconductor to alter the polarity.

Dielectric or insulator

- no free charge
- microscopic electric dipoles
- energy stored capability
- polar and non-polar molecules

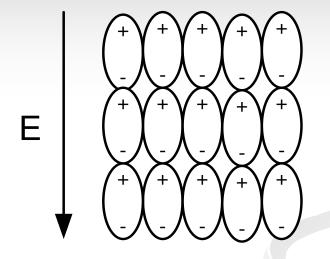




polar molecules

non-polar molecules

Alignment of dipoles with E field



Polarization

Each dipole has its dipole moment, p

$$\vec{p} = Q\vec{d}$$
 $C \cdot m$

where Q is the positive one of the two bound charges \vec{d} is the vector from the negative to the positive charge.

 C/m^2

$$\vec{p}_{total} = \sum_{i=1}^{n\Delta v} p_i$$

where n = number of dipoles per volume.

Polarization is dipole moment per unit volume,

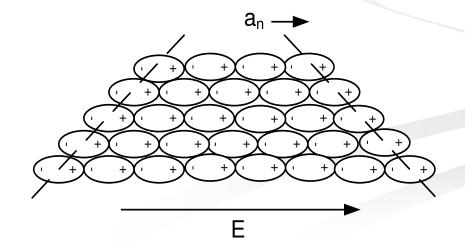
$$\vec{P} = \lim_{\Delta v \to 0} \frac{1}{\Delta v} \sum_{i=1}^{n\Delta v} p_i$$

Equivalent polarization

- The movement of bound charges when induced by an electric field causes changes in surface and volume charge densities.
- 1. Equivalent polarization surface charge density, $\rho_{\rho s}$

$$\rho_{\rho s} = \vec{P} \Box a_n \qquad C \,/\, m^2$$

2. Equivalent polarization volume charge density, ρ_{ov}



Electric flux density in a dielectric material (1)

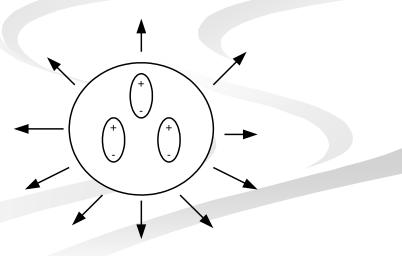
 \vec{D} can be calculated from free and bound charges.

Net bound charges flowing out of the closed surfaces,

$$Q_b = - \underset{S}{\oplus} \overrightarrow{P} \cdot d \overrightarrow{S} \qquad C$$

Let
$$Q_T = Q + Q_b$$

where Q_T = total charge Q = free charge



Electric flux density in a dielectric material (2)

From $Q_T = \bigoplus_s \varepsilon_0 \vec{E} \Box d\vec{S}$ then $Q = Q_T - Q_b = \bigoplus_s (\varepsilon_0 \vec{E} + \vec{P}) \cdot d\vec{S}$. Let $\vec{D} = \varepsilon_0 \vec{E} + \vec{P}$ we can write $Q = \bigoplus_s \vec{D} \Box d\vec{S}$

where D is an electric flux density in a dielectric material.

Equivalent divergence relationships

From
$$Q_b = - \oint_{S} \vec{P} \Box a_n d\vec{S}$$
,

use a divergence theorem, we have $- \oint_{S} \vec{P} \Box d\vec{S} = \oint_{V} -\nabla \Box \vec{P} dV.$

Since $Q_b = \int \rho_{\rho v} dv$

then
$$\nabla \Box \vec{P} = -\rho_{\rho v} = -\rho_b.$$

We can also show that $\nabla \Box \varepsilon_0 \vec{E} = \rho_T$,

therefore $\nabla \Box D = \rho_T - \rho_b = \rho_v$.

Electric flux density in dielectric medium (1)

If the dielectric material is linear and isotropic, the polarization \vec{P} is proportional to the electric field \vec{E} .

$$\vec{P} = \varepsilon_0 \chi_e \vec{E}$$

where χ_e is an electric susceptibility. Then $\vec{D} = \varepsilon_0 \vec{E} + \chi_e \varepsilon_0 \vec{E}$.

Let $\varepsilon_r = \chi_e + 1$

where ε_r is a relative permittivity or a dielectric constant

Electric flux density in dielectric medium (2)

So we can write

$$D = \varepsilon_r \varepsilon_0 E$$

or
$$\vec{D} = \varepsilon \vec{E}$$

where		$\varepsilon = \varepsilon_r \varepsilon_0$	F/m.
-------	--	---	------

<u>Ex2</u> A dielectric material has an electric susceptibility $\chi_e = 0.12$ and has a uniform electric flux density D = 1.6 nC/m², determine

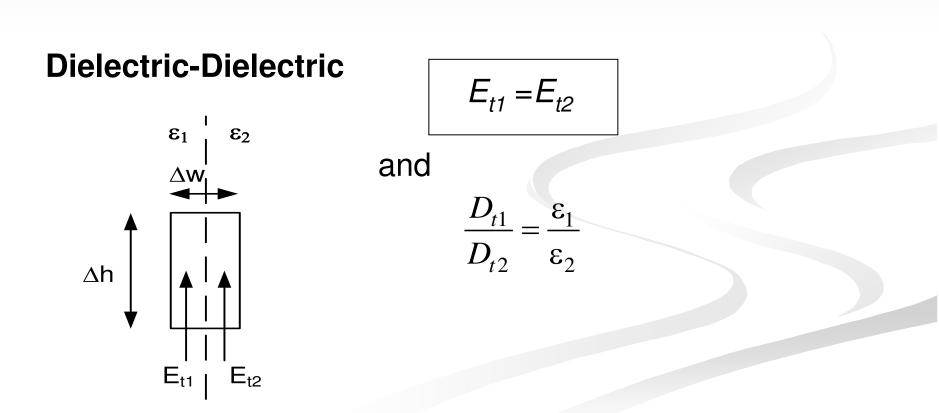
a) *E*

b) *P*

c) Average dipole moment if there are $2x10^{19}$ dipoles/m³

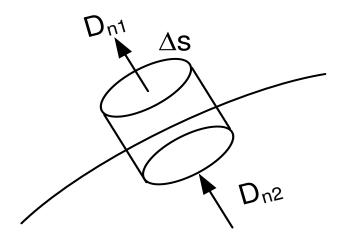
Boundary conditions for dielectric materials: tangential fields

It is useful to determine the electric field in a dielectric medium.



Boundary conditions for dielectric materials: normal fields

Dielectric-Dielectric



 $a_{21} \cdot (D_1 - D_2) = \rho_S$

For a free of charge boundary,

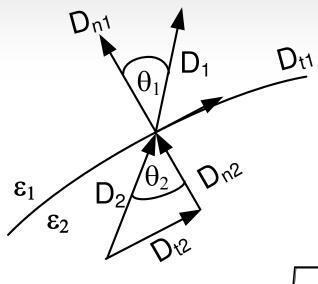
$$D_{n1} = D_{n2}$$

and

*a*₂₁ is the unit vector pointing from medium 2 to medium 1

$$\varepsilon_{1}E_{n1} = \varepsilon_{2}E_{n2}.$$

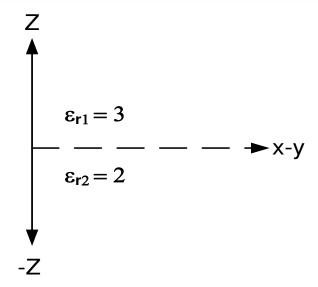
Use B.C.s to determine magnitude of Dand \vec{E}



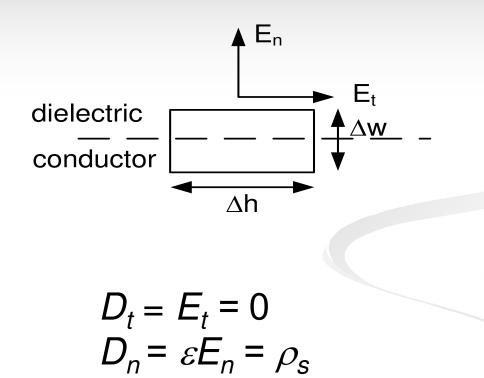
$$D_2 = D_1 \sqrt{\cos^2 \theta_1 + \frac{\varepsilon_2^2}{\varepsilon_1^2} \sin^2 \theta_1}$$

$$E_2 = E_1 \sqrt{\sin^2 \theta_1 + \frac{\varepsilon_1^2}{\varepsilon_2^2} \cos^2 \theta_1}$$

Ex3 The isotropic dielectric medium with $\varepsilon_{r1} = 3$ and $\varepsilon_{r2} = 2$ is connected as shown. Given $\vec{E}_1 = a_x - 5a_y - \frac{3}{4}a_x'$ m, determine \vec{E}_2 dits magnitude, and its magnitude, θ_1 , and θ_2 .



Boundary conditions for dielectricconductor



<u>Ex4</u> Between a dielectric-conductor interface has a surface charge density of $\rho_s = 2x10^{-9} \text{ C/m}^2$. Given $\vec{E}_1 = -30a_x + 50a_y + 70a_z \text{ V/m}$, determine \vec{E}_2 .