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Basic Equations from Vector
Calculus

For a scalar function ¢(x,y,z,1),

op Op 6(0} Gradient is normal to surfaces

gradient : Vg = (&C oy 2z aconstant

For a vector F = (Fl,Fz, F; ),
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Source: Div(F)>0 Sink: Div(F)<0 Incompressible: Div(F) =0



Basic Vector Calculus
V(FAG)=G-VAF—-F-VAG
VAVe=0, V-VAF=0

VAN AF)=V(V-F)-V*F

Stokes’ Theorem Divergence or Gauss’
. ~ Theorem
jijF-dS=§F-df
S C jij-ﬁdVZﬁﬁ-dg
dS =iidS ' ’

Closed surface S, volume V,

Oriented outward pointing normal

boundary C




What is Electromagnetism?

The study of Maxwell’'s equations, devised in 1863 to
represent the relationships between electric and magnetic
fields in the presence of electric charges and currents,
whether steady or rapidly fluctuating, in a vacuum or in
matter.

The equations represent one of the most elegant and
concise way to describe the fundamentals of electricity and
magnetism. They pull together in a consistent way earlier
results known from the work of Gauss, Faraday, Ampere,
Biot, Savart and others.

Remarkably, Maxwell’s equations are perfectly consistent
with the transformations of special relativity.



Maxwell’s Equations

Relate Electric and Magnetic fields generated by charge and

E = electric field

D = electric displacement
H = magnetic field

B = magnetic flux density

p= charge density

j = current density

L, (permeability of free space) = 4n 10”7

&o (permittivity of free space) = 8.854 1012

c (speed of light) = 2.99792458 108 m/s

In vacuum D=g,E, B=puH, scyu,c’=1



Maxwell’s 15t Equation

Equivalent to Gauss’ Flux Theorem:

V-E=L o [[v-Eav=ffE-a5=—[[ pav=2
€0 1% S o 1% &

The flux of electric field out of a closed region is proportional to
the total electric charge Q enclosed within the surface.

A point charge g generates an electric field

E-—1 7
drg,r
- - dS
JE-as= = I ==
sphere 472-80 sphere r g()

Area integral gives a measure of the net charge
enclosed; divergence of the electric field gives the density
of the sources.



V- E — ()] Maxwell’s 2" Equation

Force Vectors & Field Lines
Gauss’ law for magnetism:

V-B=0 & {:}E-dE:o
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The net magnetic flux out of any
closed surface is zero. Surround a
magnetic dipole with a closed surface.
The magnetic flux directed inward
towards the south pole will equal the
flux outward from the north pole.
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If there were a magnetic monopole
source, this would give a non-zero
integral.
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Gauss’ law for magnetism is then a statement that
There are no magnetic monopoles



Maxwell’s 34 Equation

Equivalent to Faraday’s Law of Induction:

HVAE dS——_U— ds

§E dl = dj B.ds=-2C
dt 7 dt
(for a flxed circuit C) <

The electromotive force round a
circuit ¢ = ¢ E -] is proportional to the
rate of change of flux of magnetic

field, q):ﬂé.d§ through the circuit. ' @




Maxwell’s 4t Equation

Originates from Ampére’s (Circuital) Law: V A E — /Uoj
§ B-dl = [V AB-dS=u,|| j-dS = ul
C S S

: Satisfied by the field for a steady line current (Biot-Savart Law,
o 1820):

B ﬂ01§diA7

47 =

For a straightlinecurrent B, = Hol
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Need for Displacement
Current

e Faraday: vary B-field, generate E-field

*  Maxwell: varying E-field should then produce a B-field, but not covered by Ampere’s
Law.

Apply Ampére to surface 1 (flat disk): line
integral of B =yl

...... Surface 2
Surface 1 a Applied to surface 2, line integral is zero

since no current penetrates the deformed
Cunort |—> surface.
urren E
o In capacitor, F = O , S0 [ :_Q — gOAd_E
X oA dr " dr
Closed loop 8E

o Displacement current density is 70[ =

VAB::”O(] "‘]d):ﬂo] "‘:Uogoa
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Consistency with Charge
Conservation

Charge conservation:

Total current flowing out of a region
equals the rate of decrease of charge

within the volume.

.o~ d

fpi-ds=-|

= jﬂv Jdv =—

= V-7+@—p:0
ot
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From Maxwell’s equations:

Take divergence of (modified) Ampere’s
equation

V-VAB=uV-j L2

9y
t
= 0=V j+ey = [ ]

= 0=V ]+—
ot

Charge conservation is implicit in Maxwell’s Equations



Maxwell’s Equations in

Vacuum

In vacuum

—

b=&F,

Source-free equations:
V-B=0

VAE+6—B 0

ot

Source.equgtions
Vg

&y
_ 1 06E R
VAB———=4,]
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B=H, Eobly =3

P

PN

—~
9

—~
[ ]

Equivalent integral forms
(useful for simple geometries)

;&E ds——m odV




Example: Calculate E from B

B {BO smaot r<r,

’ 0 r>r,

- B
Also from V A E __5_
Ot

=~ d e =
§E-dl :_EI B-dS

d :
r<r, 2xrE,=——nr’B,sinwt=—-rr’B,wcost
dt
1
= E, :—EBOa)rcos Wt
. d 2 . . 2
r>r, 2xrk,= —Zm;) B, sm wt = - r; Bywcos wt
!
w1 B
= E,=——2"Lcoswt
2r

1 OF then gives current density necessary

VAB= ,uoj+——

dr to sustain the fields




Lorentz Force Law

Supplement to Maxwell’s equations, gives force on a charged particle
moving in an electromagnetic field:

f = q(E +V A E)
For continuous distributions, have a force density
]_C;z = /OE +j A B
Relativistic equation of motion

— 4-vector form: F:Z—P — y(v.—,szy(ld—E d_p
T

— 3-vector component:



Motion of charged particles in constant
magnetic fields

d N\ ~ = d . L =
—(my¥v)=f =q(E+v /\B) — —(mO;/v):q(v /\B)
dt dt
1. Dot product with v:
5L (y5)=L5.5 AB=0
dt my, No acceleration
~ d. dy with a magnetic
But i =i -1) = L —y L
Ovf =P -1) = w —(7)=r—
dy : .
So ?:O — yisconstant —= Mls constant
t
2. Dot product with B:
L J g - ~ ‘\7‘ constant and ‘\7,,‘ constant
B-—(yv)=—"B-vAB=0
dt m, —> v, also constant




Motion in constant magnetic field

dv q . =
= VAB o
dr  myy Constant magnetic field
2o g gives uniform spiral about B
- —=—vVB with constant energy.
P Nyy

— circular motion withradius p=—"—"=

qB
B
at angular frequency o = L 27 (m = m%

myyv _ P
Charge's Path BIO — —
e

¥ q q
M agnetic rigidity




Motion in constant Electric Field

d N7 - o d - =
_(moyv):fZQ(E"'V/\B) — —(moyv)qu
dt dt
. d . =
Solution of —(yv)ziE
dt m,
2
IS w:ﬁt = 7/2:1+(Wj = y=
m, C
d :| ErY —
2oz - gl
dt y qk m,C
zl@tz for gE <<myc
2 m,

Energy gain is gkEXx

Constant E-field gives uniform acceleration in straight line



Potentials

Magnetic vector potential:

V-B=0 < JAsuchthat B=VAA
Electric scalar potential:

VAE:—a—B:—g(VAﬁ)z—VAa—A < VA E+8—A =0
ot ot ot Ot
= E|¢WithE+a—A=—V¢, SO E:—V¢—8—A
ot ot
Lorentz Gauge: Q— o+ flt), A—)ZHV;(
Use freedom to set i% +V - ;{ =0



Electromagnetic 4-Vectors

C

Gauge c’ ot c Ot
/ AN
4-gradient V, 4-potential A
Current J=pv

4-vector = J=pV =py(c,v)=(pc,j) where p=pyy

Continuity (10 -\_09p
equatiOn V4"]_(;5’_Vj (C a]) ot +V- ] 0

- . : V],
Charge-current o (j _ py) p'= 7(/?— ]j
transformations C



Relativistic Transformations

* 4-potential vector: A = [l o, Aj
C

« Lorentz transformation _qb/_ y _7/% 0 o_¢/_
C C
A | —7% y 0 0| A
A 0 0 1 0|4
ALl | o 0 0 1]A
OA’ ’
_ B'=V'AA' = B = f—aAf and y'= x'=y(x—vt)
 Fields: ox" Oy
oA’ of oA VX
E'=-V'¢' - = E' =- ¢ and Z'=z,t'=y|t——
- o o 7( Zj




Example: Electromagnetic Field of a Single
Particle

» Charged particle moving along x-axis of Frame F

Z
Observer P

............................ Origins coincide
ol at t=t'=0

X charge q X

/

» Phas  Q=x,=y(x,+vt') so x,=-ut
VX
N t'=7/[t—2”j:7t

» In F',fields are only electrostatic (B=0), given by

—

X'p=(—vt,0,b), so |X

4
p

= ~ t
E-Lz, = p--L g -0 E =L

r r r



EVx — Q"/; , E' O E'Z — Q_€
r r

Transform to laboratory frame F:

At non-relativistic energies, y = 1, restoring the Biot-
Savart law:




Electromagnetic Energy

* Rate of doing work on unit volume of a system is

—_—
L]

v f,=—i-(pE+jAB)=—pv-E=—j-E

e Substitute for j from Maxwell’s equations and re-arrange into the form



_7.522{1(;9’ i+ E- 5)}+v.(EAﬁ)

Integrated over a volume, have energy conservation law: rate
of doing work on system equals rate of increase of stored
electromagnetic energy+ rate of energy flow across
boundary.

= [ \E-D+B-f)av + [ Eni-as

dr dt
electric + Poynting vector
magnetic energy gives flux of e/m
densities of the energy across
fields boundaries




Review of Waves

2
» |D wave equation is th 1vwﬁ1 general
solution o' vt ar

u(x,t)=fwt—x)+gvt+x)
» Simple plane wave:

ID: sin(wt—kx) 3D: sin(a)t—lg-)_c')

_ 27T : Wavelength h
Wavelength is 4= Crest
: ),
Frequencyis v =— Trough
2

Direction of motion



Phase and group velocities

S /\ [0 e
' IRVARVIRY

| xHAX
i y /\ /\ A - Time t+At B
T/ \/ \/ \¢ [ Adoye!t ek

== ey e

. Superposition of plane waves. While
Plane wave sin(wf—kx) has constant

shape is relatively undistorted, pulse
phase wr—kx=r/2 at peaks travels with the

WAt —kAx =0 , 4o

8
A o dk
& v = =

POA k



group velocity/GroupVelocity.html

Wave packet structure

A i

-
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* Phase velocities of individual plane waves making up
the wave packet are different,

 The wave packet will then disperse with time



Electromagnetic waves

» Maxwell’s equations predict the existence of electromagnetic waves, later

discovered by Hertz.

» No charges, no currents:

V/\(V/\E)z—V/\—
=—§(V/\l§)
__ 9D _
M T

OB
Ot

O’E
ot”

3D wave equation :

2 1 2 - 2 2 1
V2E=a l;j+a l;?+8 ljzygalj
o> oy’ o o




Nature of Electromagnetic Waves

» A general plane wave with angular frequency ® travelling in the direction
of the wave vector k has the form

— —

E = EO expli(wt—k-x)] B= EO expli(wt —k - x)]
» Phase @I —]2 =X21 x number of waves and so is a Lorentz invariant.

» Apply Maxwell’s equations

Q(—)ia)

- VAE=-B < KAE=wbB

Waves are transverse to the direction of propagation,
Kk and E, E and are mutually perpendicular



Plane
Electromagnetic Wave

Electromagnetic waves transport 1
energy through empty space, stored o
In the propagating electric and
magnetic fields. /

Electric d

A I. j, field variation {

Magnetic field & o

variation is i H NAr
parpendicular ' 1‘ Magnetic

to electric field. l l fleld variation

A single-frequency electromagnetic

wave exhibite a sinusoidal vanation
of electnc and magnetic fields in
space.




Plane Electromagnetic Waves

V/\E:izé—E > E/\EZ——E
c” Ot C

Combined with k A E = @B

L 2 . . (0]
‘E‘ _o_kc = gspeedof wavein vacuumis — =c

deduce that — =
‘ B‘ ko k
Reminder: The factthat @f —k - x isan
Wavelength A :% invariant tells us that ;
K A==k
( C , j
Frequency v = @ 1s a Lorentz 4-vector, the 4-Frequency vector.
a Deduce frequency transforms as

, Lo c—V
w=y\o—-v-k|l=w
c+v



Waves in a Conducting Medium
E:EOexp[i(a)t—Eoy_c’)] Ezl?oexp[i(wt—g°5c’)]

— —

» (Ohm’s Law) For a medium of conductivity o, ] —oF
» Modified Maxwell: VAH =]+ ga_E — GE‘+55_E
Ot Ot

—iE/\FI —cE+iwcE
» Put D:i / \

/ & conduction displacement
current current

Copper: 0=5.8x10",e=¢, = D=10"
Teflon: o=3x10"% =21, = D=257x10"



Attenuation in a Good Condu tor
____________________________________ —ik NH = cE +iowsE

Combine with VAE——a—B = kAE-= ouH

ot
= k/\(k /\E)= wuk AH =-ou(-ic +we)E
= (E.E)IF_HE = —ou(-ic +ws)E

= k* = wu(-io +we) since k-E=0

. yilex .
For a good conductor D >> 1, O >> weg, kzz—za)ua — kzwf%(l—l)

Wave form is exp[ (a)t _ %ﬂ exp (_ gj’ — %(1 _ i) copper.mov water.mov



copper.mov
water.mov

Charge Density in a Conducting Material

» Inside a conductor (Ohm’s law) j=0ok
» Continuity equation is
o +V-j=0
ot
— 8—'0+0V-E:O a—'0+g
Ot ot ¢

—ot/&

» Solution is P = Op€

So charge density decays exponentially with time. For a very
good conductor, charges flow instantly to the surface to form a
surface charge density and (for time varying fields) a surface
current. Inside a perfect conductor (c—w) E=H=0



Maxwell’s Equations in a Uniform
Perfectly Conducting Guide

Hollow metallic cylinder with perfectly
z conducting boundary surfaces

Maxwell's equations with time dependence exp(iwt) are:

xt ‘I VAE. OB _ . & VE=V(V-E)-VA(VAE)

=——=—-louH
f = =iouVNH
- oD . = _
VAH=—=iweE :—a)(%uE
Ot
) JE
Vo+o~uel _+=0
: ]

Assume E(x,y,zt) = E(x, y)e ™7 7
H(x,y.2.0) = H(x, e Then|V2 4 (0”su + yz)J{H} =0
v is the propagation constant

Can solve for the fields completely
in terms of E, and H,



Special cases

* Transverse magnetic (TM modes):
— H_=0 everywhere, E_=0 on cylindrical boundary

* Transverse electric (TE modes):

— E_=0 everywhere, OH o cylindrical boundary

on
* Transverse electromagnetic (TEM modes):
— E_=H _=0 everywhere
— requires

Vratgu=0 or y=tioau



A simple model: “Parallel Plate Waveguide”

Transport between two infinite conducting plates (TE,; mode):

E =(0,,L0)E(x) "7 where E(x) satisfies
d’E

2

VIE = =-K’E, K’=o’qu+y’

dx
sin

1.€. EzA{ }Kx
COS

To satisfy boundary conditions, E=0 on x=0 and x=a, SO

E=AsmKx, K=K, :ﬂ, n integer
a

Propagation constant is

2
7=\/Kf—a)2gu:m\/1—[wj where @, = K,

a | e Jau

Cc




| )
y =ik, k:@(wz—wf)/z:w@[l—w j

Cut-off frequency, o

2
_nr Q)

y=—_/|_1-1—|, E=Asin—ce¢

a Q

c

®<, gives real solution for y, so
attenuation only. No wave propagates: cut-
off modes.

o>, gives purely imaginary solution for v,
and a wave propagates without attenuation.

2
a)c
2

For a given frequency ® only a finite number
of modes can propagate.

a)>a)6=af/7; = n<%\/;

n7ix iot=y 7 nr
9

For given frequency, convenient to
choose as.t. only n=1 mode
oCCurs.




Propagated Electromagnetic Fields

__3B

—

From VAE

, assuming A is real,

ot

PN~ myg f

N N~=r s/
W e T e
N~ N
F o7 e e Y
{f 7~ =<~ \
f + 7+~
bt 0|
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Phase and group velocities in the simple
wave guide

Wave number: k:\/a(a)z—a)f)% <oJau

27 27

Wavelength: A1="> , the free — space wavelength
. a)\// p g

. 0 1
Phase velocity: v =—>
"k eu
larger than free - space velocity

Group velocity:

kzzqu(a)z—a)f) = vg:da): K :

<
d g N eu
smaller than free - space velocity




Calculation of Wave Properties

 If a=3 cm, cut-off frequency of lowest order mode is

8
_ 1 3x10 ~ 5GHy onrm

T or “oafa 2x0.03 O da
« At7 GHz, only the n=1 mode propagates and

k= Jau(w - w?)? =227 —5) x10° /3x10° ~ 103 m™

1=2" <6cm
k

)

v, = ; ~43%x10°ms™ > ¢

k

v, =——= 2.1x10°ms™' <c¢
W&l




Flow of EM energy along the simple
guide

Fields (o>wm,) are:

E.=FE =0, E = Asin@cos(a)t—kz)
a

k .
H =-—FE, H =0, H = —ﬂAcosmsm(a)t—kz)

WL amu a

Total e/m energy
Time-averaged energy: density
a ]
: 1 1212 1 _ A2
Electric energy W, = —EHE‘ dx = —eA’a W= 4‘9‘4 a
4 - 8

2 2
. 1 §1= 1
M agnetic energy Wm=—ﬂj‘H‘2dx:—m2a AL K
4" 9 8 amu WL
n27Z'2 ,
D o A
a

=W, since k°+



Poynting Vector

Poynting vector is § = E A H =(E,H_0,~E,H)

2
Time-averaged: <S> = %(O O,l)ki T

wH 4 Total e/m energy
5 density
1 ClkA 1
Integrate over x: (S, )=— W= oAl
4 ou 4
- . (S,) k
So energy is transported at a rate: o —y
W+W  weu °

Electromagnetic energy is transported down the waveguide
with the group velocity



