Unit -3 \& 4

FEMT

Contents

- Review of Maxwell's equations and Lorentz Force Law
- Motion of a charged particle under constant Electromagnetic fields
- Relativistic transformations of fields
- Electromagnetic energy conservation
- Electromagnetic waves
- Waves in vacuo
- Waves in conducting medium
- Waves in a uniform conducting guide
- Simple example TE_{01} mode
- Propagation constant, cut-off frequency
- Group velocity, phase velocity
- Illustrations

Basic Equations from Vector Calculus

For a scalar function $\varphi(x, y, z, t)$,
gradient : $\nabla \varphi=\left(\frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial y}, \frac{\partial \varphi}{\partial z}\right)$

Gradient is normal to surfaces
$\varphi=$ constant

For a vector $\vec{F}=\left(F_{1}, F_{2}, F_{3}\right)$,
divergence : $\nabla \cdot \vec{F}=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}$
curl: $\nabla \wedge \vec{F}=\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}, \frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x}, \frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right)$

Sink: $\operatorname{Div}(F)<0$ Incompressible: $\operatorname{Div}(F)=0$

Basic Vector Calculus

$$
\begin{aligned}
& \nabla \cdot(\vec{F} \wedge \vec{G})=\vec{G} \cdot \nabla \wedge \vec{F}-\vec{F} \cdot \nabla \wedge \vec{G} \\
& \nabla \wedge \nabla \varphi=0, \quad \nabla \cdot \nabla \wedge \vec{F}=0 \\
& \nabla \wedge(\nabla \wedge \vec{F})=\nabla(\nabla \cdot \vec{F})-\nabla^{2} \vec{F}
\end{aligned}
$$

Stokes' Theorem
$\iint_{S} \nabla \wedge \vec{F} \cdot d \vec{S}=\oint_{C} \vec{F} \cdot d \vec{r}$
$d \vec{S}=\vec{n} d S$

Oriented boundary C

Divergence or Gauss’ Theorem

$$
\iiint_{V} \nabla \cdot \vec{F} d V=\oiint_{S} \vec{F} \cdot d \vec{S}
$$

Closed surface S, volume V, outward pointing normal

What is Electromagnetism?

- The study of Maxwell's equations, devised in 1863 to represent the relationships between electric and magnetic fields in the presence of electric charges and currents, whether steady or rapidly fluctuating, in a vacuum or in matter.
- The equations represent one of the most elegant and concise way to describe the fundamentals of electricity and magnetism. They pull together in a consistent way earlier results known from the work of Gauss, Faraday, Ampère, Biot, Savart and others.
- Remarkably, Maxwell's equations are perfectly consistent with the transformations of special relativity.

Maxwell’s Equations

Relate Electric and Magnetic fields generated by charge and current distributions.
$E=$ electric field
$\boldsymbol{D}=$ electric displacement
$\boldsymbol{H}=$ magnetic field
$\boldsymbol{B}=$ magnetic flux density
$\rho=$ charge density
$\boldsymbol{j}=$ current density
$\mu_{0}($ permeability of free space $)=4 \pi 10^{-7}$
$\varepsilon_{0}($ permittivity of free space $)=8.85410^{-12}$
$\mathrm{c}($ speed of light $)=2.9979245810^{8} \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
& \nabla \cdot \vec{D}=\rho \\
& \nabla \cdot \vec{B}=0 \\
& \nabla \wedge \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
& \nabla \wedge \vec{H}=\vec{j}+\frac{\partial \vec{D}}{\partial t}
\end{aligned}
$$

In vacuum $\quad \vec{D}=\varepsilon_{0} \vec{E}, \quad \vec{B}=\mu_{0} \vec{H}, \quad \varepsilon_{0} \mu_{0} c^{2}=1$

$\nabla \cdot \vec{E}=\frac{\rho}{\varepsilon_{0}}$

Maxwell's $1^{\text {st }}$ Equation

Equivalent to Gauss' Flux Theorem:

$$
\nabla \cdot \vec{E}=\frac{\rho}{\varepsilon_{0}} \Leftrightarrow \iiint_{V} \nabla \cdot \vec{E} d V=\oiint_{S} \vec{E} \cdot d \vec{S}=\frac{1}{\varepsilon_{0}} \iiint_{V} \rho d V=\frac{Q}{\varepsilon_{0}}
$$

The flux of electric field out of a closed region is proportional to the total electric charge Q enclosed within the surface.

A point charge q generates an electric field

$$
\begin{aligned}
\vec{E} & =\frac{q}{4 \pi \varepsilon_{0} r^{3}} \vec{r} \\
\iint_{\text {sphere }} \vec{E} \cdot d \vec{S} & =\frac{q}{4 \pi \varepsilon_{0}} \iint_{\text {sphere }} \frac{d S}{r^{2}}=\frac{q}{\varepsilon_{0}}
\end{aligned}
$$

Area integral gives a measure of the net charge enclosed; divergence of the electric field gives the density of the sources.

$\nabla \cdot \vec{B}=0 \quad$ Maxwell's $2^{\text {nd }}$ Equation

Force Vectors \& Field Lines

Gauss' law for magnetism:

$$
\nabla \cdot \vec{B}=0 \quad \Leftrightarrow \quad \oiint \vec{B} \cdot d \vec{S}=0
$$

The net magnetic flux out of any closed surface is zero. Surround a magnetic dipole with a closed surface. The magnetic flux directed inward towards the south pole will equal the flux outward from the north pole.

If there were a magnetic monopole source, this would give a non-zero integral.

Gauss' law for magnetism is then a statement that
There are no magnetic monopoles

Maxwell's 3 ${ }^{\text {rd }}$ Equation

Equivalent to Faraday's Law of Induction:

$$
\begin{aligned}
& \iint_{S} \nabla \wedge \vec{E} \cdot d \vec{S}=-\iint_{S} \frac{\partial \vec{B}}{\partial t} \cdot d \vec{S} \\
\Leftrightarrow & \oint_{C} E \cdot d \vec{l}=-\frac{d}{d t} \iint_{S} \vec{B} \cdot d \vec{S}=-\frac{d \Phi}{d t}
\end{aligned}
$$

(for a fixed circuit C)
The electromotive force round a circuit $\varepsilon=\oint \vec{E} \cdot d \vec{l}$ is proportional to the rate of change of flux of magnetic field, $\Phi=\iint \vec{B} \cdot d \vec{S}$ through the circuit.

Faraday's Law is the basis for electric generators. It also forms the basis for inductors and transformers.

$\nabla \wedge \vec{B}=\mu_{0} \vec{j}+\frac{1}{c^{2}} \frac{\partial \vec{E}}{\partial t}$

Maxwell's $4^{\text {th }}$ Equation

Originates from Ampère's (Circuital) Law :

$$
\nabla \wedge \vec{B}=\mu_{0} \vec{j}
$$

$$
\oint_{C} \vec{B} \cdot d \vec{l}=\iint_{S} \nabla \wedge \vec{B} \cdot d \vec{S}=\mu_{0} \iint_{S} \vec{j} \cdot d \vec{S}=\mu_{0} I
$$

Ampère
Satisfied by the field for a steady line current (Biot-Savart Law, 1820):

$$
\vec{B}=\frac{\mu_{0} I}{4 \pi} \oint \frac{d \vec{l} \wedge \vec{r}}{r^{3}}
$$

For a straightline current $\quad B_{\theta}=\frac{\mu_{0} I}{2 \pi r}$
Biot

Need for Displacement Current

- Faraday: vary B-field, generate E-field
- Maxwell: varying E-field should then produce a B-field, but not covered by Ampère's Law.

Consistency with Charge
 Conservation

Charge conservation:

Total current flowing out of a region equals the rate of decrease of charge within the volume.

$$
\begin{aligned}
& \oiint \vec{j} \cdot d \vec{S}=-\frac{d}{d t} \iiint \rho d V \\
\Leftrightarrow & \iiint \nabla \cdot \vec{j} d V=-\iiint \frac{\partial \rho}{\partial t} d V \\
\Leftrightarrow & \nabla \cdot \vec{j}+\frac{\partial \rho}{\partial t}=0
\end{aligned}
$$

From Maxwell's equations:

Take divergence of (modified) Ampère's equation

$$
\begin{aligned}
& \nabla \cdot \nabla \wedge \bar{B}=\mu_{0} \nabla \cdot \vec{j}+\frac{1}{c^{2}} \frac{\partial}{\partial t}(\nabla \cdot \vec{E}) \\
& \Rightarrow \quad 0=\mu_{0} \nabla \cdot \vec{j}+\varepsilon_{0} \mu_{0} \frac{\partial}{\partial t}\left(\frac{\rho}{\varepsilon_{0}}\right) \\
& \Rightarrow \quad 0=\nabla \cdot \vec{j}+\frac{\partial \rho}{\partial t}
\end{aligned}
$$

Charge conservation is implicit in Maxwell's Equations

Maxwell's Equations in Vacuum

In vacuum

$\vec{D}=\varepsilon_{0} \vec{E}, \quad \vec{B}=\mu_{0} \vec{H}, \quad \varepsilon_{0} \mu_{0}=\frac{1}{c^{2}}$
Source-free equations:

$$
\begin{aligned}
& \nabla \cdot \vec{B}=0 \\
& \nabla \wedge \vec{E}+\frac{\partial \vec{B}}{\partial t}=0
\end{aligned}
$$

Source-equations

$$
\begin{aligned}
& \nabla \cdot E=\frac{\varepsilon_{0}}{\varepsilon_{0}} \\
& \nabla \wedge \vec{B}-\frac{1}{c^{2}} \frac{\partial \vec{E}}{\partial t}=\mu_{0} \vec{j}
\end{aligned}
$$

Equivalent integral forms (useful for simple geometries)
$\oiint \vec{E} \cdot d \vec{S}=\frac{1}{\varepsilon_{0}} \iiint \rho d V$
$\oiint \vec{B} \cdot d \vec{S}=0$

$$
\left\{\begin{array}{l}
\vec{E} \cdot d \vec{l}=-\frac{d}{d t} \iint \vec{B} \cdot d \vec{S}=-\frac{d \Phi}{d t} \\
\left\{\vec{B} \cdot d \vec{l}=\mu_{0} \iint \vec{j} \cdot d \vec{S}+\frac{1}{c^{2}} \frac{d}{d t} \iint \vec{E} \cdot d \vec{S}\right.
\end{array}\right.
$$

Example: Calculate E from B

$$
B_{z}=\left\{\begin{array}{cc}
B_{0} \sin \omega t & r<r_{0} \\
0 & r>r_{0}
\end{array}\right.
$$

Also from $\nabla \wedge \vec{E}=-\frac{\partial \vec{B}}{\partial t}$

$$
\begin{aligned}
& \begin{array}{lc}
r<r_{0} & 2 \pi r E_{\theta}=-\frac{d}{d t} \pi r^{2} B_{0} \sin \omega t=-\pi r^{2} B_{0} \omega \cos \omega t \\
\Rightarrow & E_{\theta}=-\frac{1}{2} B_{0} \omega r \cos \omega t
\end{array} \\
& r>r_{0} \\
& \Rightarrow
\end{aligned} \quad 2 \pi r E_{\theta}=-\frac{d}{d t} \pi r_{0}^{2} B_{0} \sin \omega t=-\pi r_{0}^{2} B_{0} \omega \cos \omega t,
$$

$\nabla \wedge \vec{B}=\mu_{0} \vec{j}+\frac{1}{c^{2}} \frac{\partial \vec{E}}{d t} \quad \begin{aligned} & \text { then gives current density necessary } \\ & \text { to sustain the fields }\end{aligned}$

Lorentz Force Law

- Supplement to Maxwell's equations, gives force on a charged particle moving in an electromagnetic field:

$$
\vec{f}=q(\vec{E}+\vec{v} \wedge \vec{B})
$$

- For continuous distributions, have a force density

$$
\vec{f}_{d}=\rho \vec{E}+\vec{j} \wedge \vec{B}
$$

- Relativistic equation of motion
- 4-vector form:

$$
F=\frac{d P}{d \tau} \Rightarrow \gamma\left(\frac{\vec{v} \cdot \vec{f}}{c}, \vec{f}\right)=\gamma\left(\frac{1}{c} \frac{d E}{d t}, \frac{d \vec{p}}{d t}\right)
$$

- 3-vector component:

$$
\frac{d}{d t}\left(m_{0} \gamma \vec{v}\right)=\vec{f}=q(\vec{E}+\vec{v} \wedge \vec{B})
$$

Motion of charged particles in constant magnetic fields

$$
\frac{d}{d t}\left(m_{0} \gamma \vec{v}\right)=\vec{f}=q(\vec{E}+\vec{v} \wedge \vec{B}) \rightarrow \frac{d}{d t}\left(m_{0} \gamma \vec{v}\right)=q(\vec{v} \wedge \vec{B})
$$

1. Dot product with \boldsymbol{v} :

$$
\vec{v} \cdot \frac{d}{d t}(\gamma \vec{v})=\frac{q}{m_{0}} \vec{v} \cdot \vec{v} \wedge \vec{B}=0
$$

But $(\gamma \vec{v})^{2}=c^{2}\left(\gamma^{2}-1\right) \Rightarrow \vec{v} \cdot \frac{d}{d t}(\gamma \vec{v})=\gamma \frac{d \gamma}{d t}$

No acceleration with a magnetic field

So $\frac{d \gamma}{d t}=0 \Rightarrow \gamma$ is constant $\Rightarrow|\vec{v}|$ is constant
2. Dot product with B:

$$
\begin{aligned}
& \vec{B} \cdot \frac{d}{d t}(\gamma \vec{v})=\frac{q}{m_{0}} \vec{B} \cdot \vec{v} \wedge \vec{B}=0 \\
& \Rightarrow \quad \frac{d}{d t}(\vec{B} \cdot \vec{v})=0, \quad v_{/ /}=\mathrm{constant}
\end{aligned}
$$

$|\vec{v}|$ constant and $\left|\vec{v}_{/ /}\right|$constant
$\Rightarrow \quad v_{\perp}$ also constant

Motion in constant magnetic field

 $\frac{d \vec{v}}{d t}=\frac{q}{m_{0} r} \vec{v} \wedge \vec{B}$$\Rightarrow \frac{v_{\perp}^{2}}{\rho}=\frac{q}{m_{0} \gamma} v_{\perp} B$
Constant magnetic field gives uniform spiral about B with constant energy.
\Rightarrow circular motion with radius $\rho=\frac{m_{0} \nu_{\perp}}{q B}$
at angular frequency $\omega=\frac{v_{\perp}}{\rho}=\frac{q B}{m} \quad\left(m=m_{0} \gamma\right)$

$$
B \rho=\frac{m_{0} \gamma v}{q}=\frac{p}{q}
$$

Magnetic rigidity

Motion in constant Electric Field

$$
\frac{d}{d t}\left(m_{0} \gamma \vec{v}\right)=\vec{f}=q(\vec{E}+\vec{v} \wedge \vec{B}) \rightarrow \frac{d}{d t}\left(m_{0} \gamma \vec{v}\right)=q \vec{E}
$$

Solution of $\frac{d}{d t}(\gamma \vec{v})=\frac{q}{m_{0}} \vec{E}$
is $\quad \mathcal{w}=\frac{q E}{m_{0}} t \Rightarrow \gamma^{2}=1+\left(\frac{\gamma}{c}\right)^{2} \Rightarrow \gamma=$

$$
\begin{aligned}
\frac{d x}{d t}=\frac{\mathcal{\gamma}}{\gamma} \Rightarrow x & =\frac{m_{0} c^{2}}{q E}\left[\sqrt{1+\left(\frac{q E t}{m_{0} c}\right)^{2}}-1\right] \\
& \approx \frac{1}{2} \frac{q E}{m_{0}} t^{2} \text { for } q E \ll m_{0} c
\end{aligned}
$$

Energy gain is $q E x$
Constant E-field gives uniform acceleration in straight line

Potentials

- Magnetic vector potential:

$$
\nabla \cdot \vec{B}=0 \quad \Leftrightarrow \quad \exists \vec{A} \text { such that } \vec{B}=\nabla \wedge \vec{A}
$$

- Electric scalar potential:
$\nabla \wedge \vec{E}=-\frac{\partial \vec{B}}{\partial t}=-\frac{\partial}{\partial t}(\nabla \wedge \vec{A})=-\nabla \wedge \frac{\partial \vec{A}}{\partial t} \Leftrightarrow \nabla \wedge\left(E+\frac{\partial \vec{A}}{\partial t}\right)=0$
$\Leftrightarrow \quad \exists \phi$ with $\vec{E}+\frac{\partial \vec{A}}{\partial t}=-\nabla \phi, \quad$ so $\quad \vec{E}=-\nabla \phi-\frac{\partial \vec{A}}{\partial t}$
- Lorentz Gauge:

$$
\phi \rightarrow \phi+f(t), \quad \vec{A} \rightarrow \vec{A}+\nabla \chi
$$

Use freedom to set

$$
\frac{1}{c^{2}} \frac{\partial \phi}{\partial t}+\nabla \cdot \vec{A}=0
$$

Electromagnetic 4-Vectors

Lorentz Gauge

$$
\frac{1}{c^{2}} \frac{\partial \phi}{\partial t}+\nabla \cdot \vec{A}=0=\left(\frac{1}{c} \frac{\partial}{\partial t},-\nabla\right) \cdot\left(\frac{1}{c} \phi, \vec{A}\right)=\nabla_{4} \cdot \mathrm{~A}
$$

$$
\text { 4-gradient } \nabla_{4}
$$

4-potential A
Current

$$
\vec{j}=\rho \vec{v}
$$

4-vector $\Rightarrow \quad J=\rho_{0} V=\rho_{0} \gamma(c, \vec{v})=(\rho c, \vec{j}) \quad$ where $\rho=\rho_{0} \gamma$
Continuity equation

$$
\nabla_{4} \cdot J=\left(\frac{1}{c} \frac{\partial}{\partial t},-\nabla\right) \cdot(c \rho, \vec{j})=\frac{\partial \rho}{\partial t}+\nabla \cdot \vec{j}=0
$$

Charge-current transformations

$$
j_{x}^{\prime}=\gamma\left(j_{x}-\rho v\right), \quad \rho^{\prime}=\gamma\left(\rho-\frac{v j_{x}}{c^{2}}\right)
$$

Relativistic Transformations

- 4-potential vector: $A=\left(\frac{1}{c} \phi, \vec{A}\right)$
- Lorentz transformation

$$
\left[\begin{array}{l}
\phi^{\prime} / c \\
A_{x}^{\prime} \\
A_{y}^{\prime} \\
A_{z}^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
\gamma & -\gamma \nu / c & 0 & 0 \\
-\gamma \nu / c & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\phi / c \\
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right]
$$

- Fields:

$$
\vec{B}^{\prime}=\nabla^{\prime} \wedge \vec{A}^{\prime} \Rightarrow B_{z}^{\prime}=\frac{\partial A_{y}^{\prime}}{\partial x^{\prime}}-\frac{\partial A_{x}^{\prime}}{\partial y^{\prime}} \quad \text { and } \quad y^{\prime}=y, \quad x^{\prime}=\gamma(x-v t)
$$

$$
\vec{E}^{\prime}=-\nabla^{\prime} \phi^{\prime}-\frac{\partial \vec{A}^{\prime}}{\partial t^{\prime}} \Rightarrow E_{z}^{\prime}=-\frac{\partial \phi^{\prime}}{\partial z^{\prime}}-\frac{\partial A_{z}^{\prime}}{\partial t^{\prime}} \text { and } z^{\prime}=z, t^{\prime}=\gamma\left(t-\frac{v x}{c^{2}}\right)
$$

$$
\vec{B}_{/ /}^{\prime}=\vec{B}_{/ /} \quad \vec{B}_{\perp}^{\prime}=\gamma\left(\vec{B}_{\perp}-\frac{\vec{v} \wedge \vec{E}}{c^{2}}\right) \quad \vec{E}_{/ /}^{\prime}=\vec{E}_{/ /} \quad \vec{E}_{\perp}^{\prime}=\gamma\left(\vec{E}_{\perp}+\vec{v} \wedge \vec{B}\right)
$$

Example: Electromagnetic Field of a Single Particle

- Charged particle moving along x -axis of Frame F

- P has $0=x_{P}=\gamma\left(x_{P}^{\prime}+v t^{\prime}\right)$ so $x_{P}^{\prime}=-v t^{\prime}$

$$
\vec{x}_{P}^{\prime}=\left(-v t^{\prime}, 0, b\right), \text { so } \quad\left|\vec{x}_{p}^{\prime}\right|=r^{\prime}=\sqrt{b^{2}+v^{2} t^{\prime 2}}, \quad t^{\prime}=\gamma\left(t-\frac{v x_{p}}{c^{2}}\right)=\gamma t
$$

- In F^{\prime}, fields are only electrostatic $(\boldsymbol{B}=0)$, given by

$$
\vec{E}^{\prime}=\frac{q}{r^{\prime 3}} \vec{x}_{P}^{\prime} \Rightarrow E_{x}^{\prime}=-\frac{q v t^{\prime}}{r^{\prime 3}}, E_{y}^{\prime}=0, E_{z}^{\prime}=\frac{q b}{r^{\prime 3}}
$$

$$
E_{x}^{\prime}=-\frac{q v t^{\prime}}{r^{\prime 3}}, E_{y}^{\prime}=0, E_{z}^{\prime}=\frac{q b}{r^{\prime 3}}
$$

Transform to laboratory frame F :

$$
\vec{B}_{/ / \prime}^{\prime}=\vec{B}_{/ /} \quad \vec{B}_{\perp}^{\prime}=\gamma\left(\vec{B}_{\perp}-\frac{\vec{v} \wedge \vec{E}}{c^{2}}\right)
$$

$$
\vec{E}_{\| /}^{\prime}=\vec{E}_{\|} \quad \vec{E}_{\perp}^{\prime}=\gamma\left(\vec{E}_{\perp}+\vec{v} \wedge \vec{B}\right)
$$

$$
\begin{aligned}
& B_{y}=-\frac{\gamma v}{c^{2}} E_{z}^{\prime}=-\frac{\beta}{c} E_{z} \\
& B_{x}=B_{z}=0
\end{aligned}
$$

$$
\begin{aligned}
& E_{x}=E_{x}^{\prime}=-\frac{q \gamma v t}{\left(b^{2}+\gamma^{2} v^{2} t^{2}\right)^{3 / 2}} \\
& E_{y}=0 \\
& E_{z}=\gamma E_{z}^{\prime}=\frac{q \gamma b}{\left(b^{2}+\gamma^{2} v^{2} t^{2}\right)^{3 / 2}}
\end{aligned}
$$

At non-relativistic energies, $\gamma \approx 1$, restoring the BotSavart law:

$$
\vec{B} \propto q \frac{\vec{v} \wedge \vec{r}}{r^{3}}
$$

Electromagnetic Energy

- Rate of doing work on unit volume of a system is

$$
-\vec{v} \cdot \vec{f}_{d}=-\vec{v} \cdot(\rho \vec{E}+\vec{j} \wedge \vec{B})=-\rho \vec{v} \cdot \vec{E}=-\vec{j} \cdot \vec{E}
$$

- Substitute for \boldsymbol{j} from Maxwell's equations and re-arrange into the form

$$
\begin{aligned}
& -\vec{j} \cdot \vec{E}=-\left(\nabla \wedge \vec{H}-\frac{\partial \vec{D}}{\partial t}\right) \cdot \vec{E}=\nabla \cdot \vec{E} \wedge \vec{H}-\vec{H} \cdot \nabla \wedge \vec{E}+\vec{E} \cdot \frac{\partial \vec{D}}{\partial t} \\
& \quad=\nabla \cdot S+\vec{H} \cdot \frac{\partial \vec{B}}{\partial t}+\vec{E} \cdot \frac{\partial \vec{D}}{\partial t} \quad \text { where } \quad \vec{S}=\vec{E} \wedge \vec{H} \\
& \quad=\nabla \cdot S+\frac{1}{2} \frac{\partial}{\partial t}(\vec{E} \cdot \vec{D}+\vec{B} \cdot \vec{H}) \quad \text { Poynting vector }
\end{aligned}
$$

$$
-\vec{j} \cdot \vec{E}=\frac{\partial}{\partial t}\left\{\frac{1}{2}(\vec{B} \cdot \vec{H}+\vec{E} \cdot \vec{D})\right\}+\nabla \cdot(\vec{E} \wedge \vec{H})
$$

Integrated over a volume, have energy conservation law: rate of doing work on system equals rate of increase of stored electromagnetic energy+ rate of energy flow across boundary.

$$
\begin{aligned}
& \frac{d W}{d t}=\frac{d}{d t} \iiint \frac{1}{2}(\vec{E} \cdot \vec{D}+\vec{B} \cdot \vec{H}) d V+\iint \vec{E} \wedge \vec{H} \cdot d \vec{S} \\
& \begin{array}{c}
\text { electric + } \\
\begin{array}{c}
\text { Poynting vector } \\
\text { magnetic energy } \\
\text { gives flux of e/m } \\
\text { energy across } \\
\text { boundaries }
\end{array} \\
\text { fields the }
\end{array} \\
& \hline
\end{aligned}
$$

Review of Waves

- ID wave equation is solution

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{\frac{1}{2} \partial_{i t h}^{2}} \frac{v^{2}}{t^{2}} \text { general }
$$

$$
u(x, t)=f(\underline{ }(\underline{v t-x})+g(\underbrace{v t+x})
$$

- Simple plane wave:

$$
\text { 1D: } \quad \sin (\omega t-k x) \quad 3 \mathrm{D}: \quad \sin (\omega t-\vec{k} \cdot \vec{x})
$$

Wavelength is $\lambda=\frac{2 \pi}{|\vec{k}|}$
Frequency is $v=\frac{\omega}{2 \pi}$

Direction of motion

Phase and group velocities

Plane wave $\sin (\omega t-k x)$ has constant phase $\omega t-k x=\pi / 2$ at peaks

$$
\begin{aligned}
& \omega \Delta t-k \Delta x=0 \\
\Leftrightarrow & v_{p}=\frac{\Delta x}{\Delta t}=\frac{\omega}{k}
\end{aligned}
$$

$$
\int_{-\infty}^{\infty} A(k) e^{i[\omega(k) t-k x]} d k
$$

Superposition of plane waves. While shape is relatively undistorted, pulse travels with the group velocity

$$
v_{g}=\frac{d \omega}{d k}
$$

Wave packet structure

- Phase velocities of individual plane waves making up the wave packet are different,
- The wave packet will then disperse with time

Electromagnetic waves

- Maxwell's equations predict the existence of electromagnetic waves, later discovered by Hertz.
- No charges, no currents:

$$
\begin{aligned}
\nabla & \wedge(\nabla \wedge \vec{E})=-\nabla \wedge \frac{\partial \vec{B}}{\partial t} \\
& =-\frac{\partial}{\partial t}(\nabla \wedge \vec{B}) \\
& =-\mu \frac{\partial^{2} \vec{D}}{\partial t^{2}}=-\mu \varepsilon \frac{\partial^{2} \vec{E}}{\partial t^{2}}
\end{aligned}
$$

$$
\begin{gathered}
\nabla \wedge \vec{H}=\frac{\partial \vec{D}}{\partial t} \\
\nabla \cdot \vec{D}=0 \\
\nabla \cdot \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
\begin{aligned}
\nabla \wedge(\nabla \wedge \vec{E})= & \nabla(\nabla \cdot \vec{E})-\nabla^{2} \vec{E} \\
& =-\nabla^{2} \vec{E}
\end{aligned}
\end{gathered}
$$

3D wave equation :

$$
\nabla^{2} \vec{E}=\frac{\partial^{2} \vec{E}}{\partial x^{2}}+\frac{\partial^{2} \vec{E}}{\partial y^{2}}+\frac{\partial^{2} \vec{E}}{\partial z^{2}}=\mu \varepsilon \frac{\partial^{2} \vec{E}}{\partial t^{2}}
$$

Nature of Electromagnetic Waves

A general plane wave with angular frequency ω travelling in the direction of the wave vector \boldsymbol{k} has the form

$$
\vec{E}=\vec{E}_{0} \exp [i(\omega t-\vec{k} \cdot \vec{x})] \quad \vec{B}=\vec{B}_{0} \exp [i(\omega t-\vec{k} \cdot \vec{x})]
$$

- Phase $\omega t-\vec{k}=\overrightarrow{2} 2 \pi \times$ number of waves and so is a Lorentz invariant.
- Apply Maxwell's equations

$$
\begin{array}{|l|rll}
\nabla \leftrightarrow-i \vec{k} & \nabla \cdot \vec{E}=0=\nabla \cdot \vec{B} & \leftrightarrow & \vec{k} \cdot \vec{E}=0=\vec{k} \cdot \vec{B} \\
\frac{\partial}{\partial t} \leftrightarrow i \omega & \nabla \wedge \vec{E}=-\dot{\vec{B}} & \leftrightarrow & \vec{k} \wedge \vec{E}=\omega \vec{B}
\end{array}
$$

Waves are transverse to the direction of propagation,
$\overrightarrow{\boldsymbol{k}}$ and \vec{E}, \vec{B} and are mutually perpendicular

Plane

Electromagnetic Wave

Electromagnetic waves transport energy through empty space, stored in the propagating electric and magnetic fields.

Magnetic field variation is perpendicular to electric field.

Plane Electromagnetic Waves

$$
\nabla \wedge \vec{B}=\frac{1}{c^{2}} \frac{\partial \vec{E}}{\partial t} \leftrightarrow \vec{k} \wedge \vec{B}=-\frac{\omega}{c^{2}} \vec{E}
$$

Combined with $\vec{k} \wedge \vec{E}=\omega \vec{B}$
deduce that $\frac{|\vec{E}|}{|\vec{B}|}=\frac{\omega}{k}=\frac{k c^{2}}{\omega} \Rightarrow$ speed of wave in vacuum is $\frac{\omega}{|\vec{k}|}=c$

Wavelength $\quad \lambda=\frac{2 \pi}{|\overrightarrow{\mathrm{k}}|}$
Frequency $\quad v=\frac{\omega}{2 \pi}$

Reminder: The fact that $\omega t-\vec{k} \cdot \vec{x}$ is an invariant tells us that

$$
\Lambda=\left(\frac{\omega}{c}, \vec{k}\right)
$$

is a Lorentz 4 -vector, the 4 -Frequency vector.
Deduce frequency transforms as

$$
\omega^{\prime}=\gamma(\omega-\vec{v} \cdot \vec{k})=\omega \sqrt{\frac{c-v}{c+v}}
$$

Waves in a Conducting Medium

$$
\vec{E}=\vec{E}_{0} \exp [i(\omega t-\vec{k} \cdot \vec{x})] \quad \vec{B}=\vec{B}_{0} \exp [i(\omega t-\vec{k} \cdot \vec{x})]
$$

(Ohm's Law) For a medium of conductivity σ,

$$
\vec{j}=\sigma \vec{E}
$$

- Modified Maxwell:

$$
\begin{aligned}
& \nabla \wedge \vec{H}=\vec{j}+\varepsilon \frac{\partial \vec{E}}{\partial t}=\sigma \vec{E}+\varepsilon \frac{\partial \vec{E}}{\partial t} \\
& -i \vec{k} \wedge \vec{H}=\sigma \vec{E}+i \omega \varepsilon \vec{E} \\
& \substack{\text { conduction } \\
\text { current }}
\end{aligned}
$$

- Put $D=\frac{\sigma}{\omega \varepsilon}$

Dissipation

factor

Copper: $\sigma=5.8 \times 10^{7}, \varepsilon=\varepsilon_{0} \quad \Rightarrow \quad D=10^{12}$
Teflon: $\sigma=3 \times 10^{-8}, \varepsilon=2.1 \varepsilon_{0} \Rightarrow D=2.57 \times 10^{-4}$

Attenuation in a Good Conductor

$$
-i \vec{k} \wedge \vec{H}=\sigma \vec{E}+i \omega \varepsilon \vec{E}
$$

$$
\begin{aligned}
& \text { Combine with } \nabla \wedge \vec{E}=-\frac{\partial \vec{B}}{\partial t} \Rightarrow \vec{k} \wedge \vec{E}=\omega \mu \vec{H} \\
& \Rightarrow \quad \vec{k} \wedge(\vec{k} \wedge \vec{E})=\omega \mu \vec{k} \wedge \vec{H}=-\omega \mu(-i \sigma+\omega \varepsilon) \vec{E} \\
& \Rightarrow \quad(\vec{k} \cdot \vec{E}) \vec{k}-k^{2} \vec{E}=-\omega \mu(-i \sigma+\omega \varepsilon) \vec{E} \\
& \Rightarrow \quad k^{2}=\omega \mu(-i \sigma+\omega \varepsilon) \text { since } \vec{k} \cdot \vec{E}=0
\end{aligned}
$$

For a good conductor $\mathrm{D} \gg 1, \quad \sigma \gg \omega \varepsilon, \quad k^{2} \approx-i \omega \mu \sigma \quad \Rightarrow \quad k \approx \sqrt{\frac{\omega \mu \sigma}{2}}(1-i)$ Wave form is $\exp \left[i\left(\omega t-\frac{x}{\delta}\right)\right] \exp \left(-\frac{x}{\delta}\right), \quad k=\frac{1}{\delta}(1-i) \quad$ copper.mov \quad water.mov where $\delta=\sqrt{\frac{2}{\omega \mu \sigma}}$ is the skin- depth

Charge Density in a Conducting Material

- Inside a conductor (Ohm's law) $\vec{j}=\sigma \vec{E}$

Continuity equation is

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\nabla \cdot \vec{j}=0 \\
& \Leftrightarrow \quad \frac{\partial \rho}{\partial t}+\sigma \nabla \cdot \vec{E}=0=\frac{\partial \rho}{\partial t}+\frac{\sigma}{\varepsilon} \rho
\end{aligned}
$$

- Solution is $\quad \rho=\rho_{0} e^{-\sigma t / \varepsilon}$

So charge density decays exponentially with time. For a very good conductor, charges flow instantly to the surface to form a surface charge density and (for time varying fields) a surface current. Inside a perfect conductor $(\sigma \rightarrow \infty) E=H=0$

Maxwell's Equations in a Uniform Perfectly Conducting Guide

Hollow metallic cylinder with perfectly

 conducting boundary surfacesMaxwell's equations with time dependence $\exp (i \omega t)$ are:

Assume $\quad \vec{E}(x, y, z, t)=\vec{E}(x, y) e^{(i o t-\gamma z)}$

$$
\begin{aligned}
E(x, y, z, t) & =E(x, y) e \\
\vec{H}(x, y, z, t) & =\vec{H}(x, y) e^{(i \omega t-\gamma z)}
\end{aligned} \quad \text { Then }\left[\nabla_{t}^{2}+\left(\omega^{2} \varepsilon \mu+\gamma^{2}\right)\right]\left[\begin{array}{l}
\vec{E} \\
\vec{H}
\end{array}\right\}=0
$$

γ is the propagation constant
Can solve for the fields completely
in terms of E_{z} and H_{z}

Special cases

- Transverse magnetic (TM modes):
- $H_{z}=0$ everywhere, $E_{z}=0$ on cylindrical boundary
- Transverse electric (TE modes):
- $E_{z}=0$ everywhere,

$$
\frac{\partial H_{z}}{\partial n} \xlongequal{\rho} 0 \text { cylindrical boundary }
$$

- Transverse electromagnetic (TEM modes):
- $E_{z}=H_{z}=0$ everywhere
- requires

$$
\gamma^{2}+\omega^{2} \varepsilon \mu=0 \quad \text { or } \quad \gamma= \pm i \omega \sqrt{\varepsilon \mu}
$$

A simple model: "Parallel Plate Waveguide"

Transport between two infinite conducting plates (TE_{01} mode):

$$
\begin{gathered}
\vec{E}=(0,1,0) E(x) e^{(i \omega t-\gamma z)} \quad \text { where } E(x) \text { satisfies } \\
\nabla_{\mathrm{t}}^{2} E=\frac{d^{2} E}{d x^{2}}=-K^{2} E, \quad K^{2}=\omega^{2} \varepsilon \mu+\gamma^{2} \\
\text { i.e. } E=A\left\{\begin{array}{c}
\sin \\
\cos
\end{array}\right\} K x
\end{gathered}
$$

To satisfy boundary conditions, $E=0$ on $x=0$ and $x=a$, so

$$
E=A \sin K x, \quad K=K_{n}=\frac{n \pi}{a}, \quad n \text { integer }
$$

Propagation constant is

$$
\gamma=\sqrt{K_{n}^{2}-\omega^{2} \varepsilon \mu}=\frac{n \pi}{a} \sqrt{1-\left(\frac{\omega}{\omega_{c}}\right)^{2}} \quad \text { where } \quad \omega_{c}=\frac{K_{n}}{\sqrt{\varepsilon \mu}}
$$

Cut-off frequency, ω_{c}

$$
\gamma=\frac{n \pi}{a} \sqrt{1-\left(\frac{\omega}{\omega_{c}}\right)^{2}}, \quad E=A \sin \frac{n \pi x}{a} e^{i \omega t-\gamma z}, \quad \omega_{c}=\frac{n \pi}{a \sqrt{\varepsilon \mu}}
$$

- $\omega<\omega_{c}$ gives real solution for γ, so attenuation only. No wave propagates: cutoff modes.
- $\omega>\omega_{c}$ gives purely imaginary solution for γ, and a wave propagates without attenuation.
$\gamma=i k, \quad k=\sqrt{\varepsilon \mu}\left(\omega^{2}-\omega_{c}^{2}\right)^{1 / 2}=\omega \sqrt{\varepsilon \mu}\left(1-\frac{\omega_{c}^{2}}{\omega^{2}}\right)^{1 / 2}$
- For a given frequency ω only a finite number of modes can propagate.

ш
For given frequency, convenient to choose a s.t. only $n=1$ mode occurs.

Propagated Electromagnetic Fields

From $\nabla \wedge \vec{E}=-\frac{\partial \vec{B}}{\partial t}$, assuming A is real,

Phase and group velocities in the simple wave guide

Wave number: $k=\sqrt{\varepsilon \mu}\left(\omega^{2}-\omega_{c}^{2}\right)^{1 / 2}<\omega \sqrt{\varepsilon \mu}$
Wavelength: $\lambda=\frac{2 \pi}{k}>\frac{2 \pi}{\omega \sqrt{\varepsilon \mu}}$, the free - space wavelength
Phase velocity: $\quad v_{p}=\frac{\omega}{k}>\frac{1}{\sqrt{\varepsilon \mu}}$,
larger than free - space velocity
Group velocity:

$$
k^{2}=\varepsilon \mu\left(\omega^{2}-\omega_{c}^{2}\right) \Rightarrow v_{g}=\frac{d \omega}{d k}=\frac{k}{\omega \varepsilon \mu}<\frac{1}{\sqrt{\varepsilon \mu}}
$$

smaller than free - space velocity

Calculation of Wave Properties

- If $\mathrm{a}=3 \mathrm{~cm}$, cut-off frequency of lowest order mode is

$$
f_{c}=\frac{\omega_{c}}{2 \pi}=\frac{1}{2 a \sqrt{\varepsilon \mu}} \cong \frac{3 \times 10^{8}}{2 \times 0.03} \cong 5 \mathrm{GHz} \quad \omega_{c}=\frac{n \pi}{a \sqrt{\varepsilon \mu}}
$$

- At 7 GHz , only the $\mathrm{n}=1$ mode propagates and

$$
\begin{aligned}
& k=\sqrt{\varepsilon \mu}\left(\omega^{2}-\omega_{c}^{2}\right)^{1 / 2} \cong 2 \pi\left(7^{2}-5^{2}\right)^{1 / 2} \times 10^{9} / 3 \times 10^{8} \approx 103 \mathrm{~m}^{-1} \\
& \lambda=\frac{2 \pi}{k} \approx 6 \mathrm{~cm} \\
& v_{p}=\frac{\omega}{k} \approx 4.3 \times 10^{8} \mathrm{~ms}^{-1}>c \\
& v_{g}=\frac{k}{\omega \varepsilon \mu}=2.1 \times 10^{8} \mathrm{~ms}^{-1}<c
\end{aligned}
$$

Flow of EM energy along the simple guide

Fields $\left(\omega>\omega_{\mathrm{c}}\right)$ are:
$E_{x}=E_{z}=0, \quad E_{y}=A \sin \frac{n \pi x}{a} \cos (\omega t-k z)$
$H_{x}=-\frac{k}{\omega \mu} E_{y}, \quad H_{y}=0, \quad H_{z}=-\frac{n \pi}{a \omega \mu} A \cos \frac{n \pi x}{a} \sin (\omega t-k z)$
Total e/m energy
Time-averaged energy: density
Electric energy $W_{e}=\frac{1}{4} \varepsilon \int_{0}^{a}|\vec{E}|^{2} d x=\frac{1}{8} \varepsilon A^{2} a$

$$
W=\frac{1}{4} \varepsilon A^{2} a
$$

Magnetic energy

$$
\begin{aligned}
W_{m} & =\frac{1}{4} \mu \int_{0}^{a}|\vec{H}|^{2} d x=\frac{1}{8} \mu A^{2} a\left\{\left(\frac{n \pi}{a \omega \mu}\right)^{2}+\left(\frac{k}{\omega \mu}\right)^{2}\right\} \\
& =W_{e} \quad \text { since } \quad k^{2}+\frac{n^{2} \pi^{2}}{a^{2}}=\omega^{2} \varepsilon \mu
\end{aligned}
$$

Poynting Vector

Poynting vector is $\vec{S}=\vec{E} \wedge \vec{H}=\left(E_{y} H_{z}, 0,-E_{y} H_{x}\right)$
Time-averaged: $\langle\vec{S}\rangle=\frac{1}{2}(0,0,1) \frac{k A^{2}}{\omega \mu} \sin ^{2} \frac{n \pi x}{a}$
Integrate over $x: \quad\left\langle S_{z}\right\rangle=\frac{1}{4} \frac{a k A^{2}}{\omega \mu}$
Total e/m energy density

$$
W=\frac{1}{4} \varepsilon A^{2} a
$$

So energy is transported at a rate: $\frac{\left\langle S_{z}\right\rangle}{W_{e}+W_{m}}=\frac{k}{\omega \varepsilon \mu}=v_{g}$
Electromagnetic energy is transported down the waveguide with the group velocity

