Unit 1 Lecture 5

The steps of writing into Memory

- What happens when the programmer issues the STA instruction?
 - The microprocessor would turn on the WR control (WR = 0) and turn off the RD control (RD = 1).
 - The address is applied to the address decoder which generates a single Enable signal to turn on only one of the memory registers.
 - The data is then applied on the data lines and it is stored into the enabled register.

Dimensions of Memory

- Memory is usually measured by two numbers: its length and its width (Length X Width).
 - The length is the total number of locations.
 - The width is the number of bits in each location.
 - The length (total number of locations) is a function of the number of address lines.

of memory locations = $2^{(\# \text{ of address lines})}$

• So, a memory chip with 10 address lines would have $2^{10} = 1024$ locations (1K)

•Looking at it from the other side, a memory chip with 4K locations would need

Log₂ 4096=12 address lines

The 8085 and Memory

- The 8085 has 16 address lines. That means it can address
 - $2^{16} = 64K$ memory locations.
 - Then it will need 1 memory chip with 64 k locations, or 2 chips with 32 K in each, or 4 with 16 K each or 16 of the 4 K chips, etc.
- how would we use these address lines to control the multiple chips?

Chip Select

- Usually, each memory chip has a CS (Chip Select) input. The chip will only work if an active signal is applied on that input.
- To allow the use of multiple chips in the make up of memory, we need to use a number of the address lines for the purpose of "chip selection".
 - These address lines are decoded to generate the 2ⁿ necessary CS inputs for the memory chips to be used.

Chip Selection Example

- Assume that we need to build a memory system made up of 4 of the 4 X 4 memory chips we designed earlier.
- We will need to use 2 inputs and a decoder to identify which chip will be used at what time.
- The resulting design would now look like the one on the following slide.

Memory Map and Addresses

The memory map is a picture representation of the address range and shows where the different memory chips are located within the address range.

Address Range of a Memory Chip

- The address range of a particular chip is the list of all addresses that are mapped to the chip.
 - An example for the address range and its relationship to the memory chips would be the Post Office Boxes in the post office.
 - Each box has its unique number that is assigned sequentially. (memory locations)
 - The boxes are grouped into groups. (memory chips)
 - The first box in a group has the number immediately after the last box in the previous group.

Input and output devices

Microprocessor need to Identify I/O devices with binary number.

IO devices can be interfaced: •Memory-Mapped I/O (using addresses from memory space).Device is identified by 16-bit address (Space ranges from 0000H -FFFFH

•Standard I/O mapped or isolated I/O mapping /Peripheral Mapped I/O has separate numbering scheme for I/O devices. Instructions IN/OUT are used for data transfer. Device is identified by 8-bit address (Space ranges from 00H -FFH)

Memory Mapping of I/O device	I/O Mapping of I/O device
 1.16-bit addresses are provided for I/O devices. 2.The devices are accessed by memory read or memory write cycles. 	 8-bit addresses are provided for I/O devices. The devices are accessed by I/O read or I/O write cycle. During these cycles the 8-bit address is available on both low order address lines and high order address lines.
3. The I/O ports or peripherals can be treated like memory locations and so all instructions related to memory can be used for data transfer between I/O device and the processor.	3.Only IN and OUT instructions can be used for data transfer between I/O device and the processor.
 In memory mapped ports the data can be moved from any register to ports and vice- versa. 	 In I/O mapped ports the data transfer can take place only between the accumulator and ports.
5. When memory mapping is used for I/O devices, the full memory address space cannot be used for addressing memory. Hence memory mapping is useful only for small systems, where the memory requirement is less.	5. When I/O mapping is used for I/O devices then the full memory address space can be used for addressing memory. Hence it is suitable for systems which requires large memory capacity.
 In memory mapped I/O devices, a large number of I/O ports can be interfaced. 	6. In I/O mapping only 256 ports $(2^8 = 256)$ can be interfaced.
7.For accessing the memory mapped devices, the processor executes memory read or write	For accessing the I/O mapped devices, the processor executes I/O read or write cycle.
cycle. During this cycle IO/ \overline{M} is asserted low (IO/ $\overline{M} = 0$).	During this cycle IO/ \overline{M} is asserted high (IO/ $\overline{M} = 1$).