Unit 3
LECTURE 5

Interrupts

« An nterrupt 1s considered to be an emergency
signal.

— The Microprocessor should respond to it as soon as
possible.

* When the Microprocessor receives an interrupt
signal, 1t suspends the currently executing
program and jumps to an Interrupt Service
Routine (ISR) to respond to the incoming
interrupt.

— Each interrupt will most probably have its own ISR.

Main routine

Interrupt
Save Send out
— > | program »| Disable —— | interupt
counter interrupts acknowledge
A 4
Go to
service
\ routine

Get
original

Responding to Interrupts

« Responding to an interrupt may be immediate or
delayed depending on whether the interrupt 1s
maskable or non-maskable and whether interrupts
are being masked or not.

« There are two ways of redirecting the execution to
the ISR depending on whether the interrupt 1s
vectored or non-vectored.

— The vector 1s already known to the Microprocessor

— The device will have to supply the vector to the
Microprocessor

The 8085 Interrupts

* The maskable interrupt process in the 8085 1s
controlled by a single flip flop inside the
microprocessor. This Interrupt Enable flip flop 1s

controlled using the two instructions “EI” and
CCDI?D.

* The 8085 has a single Non-Maskable interrupt.

— The non-maskable interrupt 1s not affected by the value
of the Interrupt Enable flip flop.

Types of interrupts

|
| |

Maskable Non- Maskable

/N |

Non vectored Vectored

INTR RST 5.5 TRAP (vectored)
RST 6.5

RST 7.5

The 8085 Interrupts

* The 8085 has 5 interrupt inputs.

— The INTR 1nput.

» The INTR input is the only non-vectored interrupt.
« INTR is maskable using the EI/DI instruction pair.

— RST 5.5, RST 6.5, RST 7.5 are all automatically
vectored.
« RST 5.5, RST 6.5, and RST 7.5 are all maskable.

— TRAP is the only non-maskable interrupt in the 8085
« TRAP is also automatically vectored

The 8085 Interrupts

Interrupt name | Maskable | Vectored
INTR Yes No
RST 5.5 Yes Yes
RST 6.5 Yes Yes
RST 7.5 Yes Yes

TRAP No Yes

Interrupt Vectors and the Vector
Table

« An interrupt vector 1s a pointer to where the ISR 1s
stored in memory.

 All interrupts (vectored or otherwise) are mapped

onto a memory area called the Interrupt Vector
Table (IVT).

— The IVT 1s usually located in memory page 00 (0O0O0H
- OOFFH).

— The purpose of the IVT is to hold the vectors that
redirect the microprocessor to the right place when an
interrupt arrives.

— The IVT 1s divided into several blocks. Each block 1s
used by one of the interrupts to hold its “vector”

Maskable/Non vectored Interrupt Process

The interrupt process should be enabled using the EI instruction.

The 8085 checks for an INTR line (interrupt signal/pin 10) during the execution of
every instruction.

If there 1s an interrupt(INTR 1is high) , and if the interrupt is enabled, the
microprocessor will complete the executing instruction, and reset/disables the
interrupt flip flop and sends signal INTA’ (interrupt acknowledge active low signal).
The microprocessor then executes a RST restart instruction (or a call instruction)
through external hardware.RST sends the execution to the appropriate location on
page 00H 1n the interrupt vector table.

When the microprocessor executes the call instruction, it saves the address of the
next instruction on the stack.

The microprocessor jumps to the specific service routine and performs the task.

The service routine must include the instruction EI to re-enable the interrupt
process.

At the end of the service routine, the RET instruction returns the execution to where
the program was interrupted.

The 8085 Non-Vectored Interrupt Process

Restart Equivalent
Instruction to

RSTO CALL

0000H

 The 8085 recognizes 8 RESTART RST1 gé%%;
instructions: RSTO - RST7.

RST2 CALL

— each of these would send the 0010H

execution to a predetermined RST3 CALL

hard-wired memory location: 0018H

RST4 CALL

0020H

RSTS5 CALL

0028H

RST6 CALL

0030H

RST7 CALL
0038H

Restart Sequence

* The restart sequence 1s made up of three machine
cycles

— In the 1st machine cycle:

» The microprocessor sends the INTA signal.

« While INTA is active the microprocessor reads the data lines
expecting to receive, from the interrupting device, the opcode
for the specific RST instruction.

— In the 2nd and 3rd machine cycles:
« the 16-bit address of the next instruction is saved on the stack.

* Then the microprocessor jumps to the address associated with
the specified RST instruction.

Restart Sequence

 The location in the IVT associated with the
RST 1nstruction can not hold the complete
service routine.

— The routine 1s written somewhere else 1n
memory.

— Only a JUMP 1nstruction to the ISR’s location
1s kept 1in the IVT block.

Hardware Generation of RST
Opcode

* How does the external device produce the
opcode for the appropriate RST instruction?

— The opcode 1s simply a collection of bits.

— So, the device needs to set the bits of the data

bus to the appropriate value 1n response to an
INTA signal.

Hardware Generation of RST
The following is an Opcode

example of generating Tri-state Buffer
RST 5: =

. [— O
RST 5’s opcode is EF = -

D D g
76543210 Ny
11101111 .

- D
— I TA

Hardware Generation of RST
Opcode

* During the interrupt acknowledge machine cycle,
(the 1st machine cycle of the RST operation):
— The Microprocessor activates the INTA signal.

— This signal will enable the Tri-state buffers, which will
place the value EFH on the data bus.

— Therefore, sending the Microprocessor the RST 5
instruction.

« The RST 5 instruction 1s exactly equivalent to
CALL 0028H

Multiple Interrupts & Priorities

* How do we allow multiple devices to
interrupt using the INTR line?

— The microprocessor can only respond to one
signal on INTR at a time.

— Therefore, we must allow the signal from only
one of the devices to reach the microprocessor.

— We must assign some priority to the different
devices and allow their signals to reach the
microprocessor according to the priority.

The Priority Encoder

* The solution 1s to use a circuit called the priority
encoder (74366).

— This circuit has 8 inputs and 3 outputs.

— The 1inputs are assigned increasing priorities according
to the increasing index of the input.
 Input 7 has highest priority and input O has the lowest.

— The 3 outputs carry the index of the highest priority
active input.

— Figure 12.4 in the book shoes how this circuit can be
used with a Tri-state buffer to implement an interrupt
priority scheme.

 The figure in the textbook does not show the method for
distributing the INTA signal back to the individual devices.

Multiple Interrupts and Priority

e, —— INTR Circuit
Dev. 7 o [OF i i
do. 7 «—— |NTA Circuit
5] . .
do. 4 — RST Circuit
Dev. 6 q0O, L
do, 1)
< Q0. 3 +5V
Dev. 5 O 01 8 T
do, l
ey, “
Dev. 4 [g 233233
INTA
. » INTR
Dev.3 | 8
— :7 7 x | AD7
SIk N
Dev.2 [*— e 4 > w00 ()
> :4 3 > Japa 8
Dev. 1 - :|3 } » AD3 5
| 6 »| AD2
|—> 1 _ " AD1
¢ | 6 Tri— |
Dev. 0 [9 State »| ADO
Buffer

Priority
Encoder

