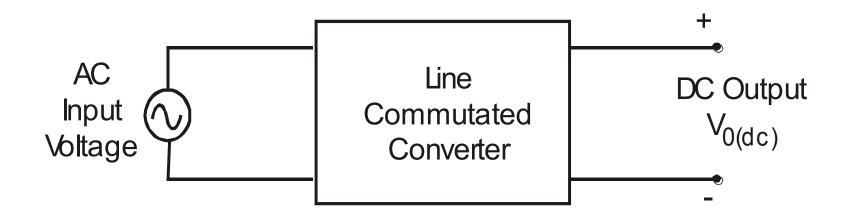
Controlled Rectifiers

(Line Commutated AC to DC converters)



 Type of input: Fixed voltage, fixed frequency ac power supply.
 Type of output: Variable dc output voltage
 Type of commutation: Natural / AC line commutation.

Different types of Line Commutated Converters

- AC to DC Converters (Phase controlled rectifiers)
- AC to AC converters (AC voltage controllers)
- AC to AC converters (Cyclo converters) at low output frequency.

Differences Between Diode Rectifiers R Phase Controlled Rectifiers

- The diode rectifiers are referred to as uncontrolled rectifiers .
- The diode rectifiers give a fixed dc output voltage .
- Each diode conducts for one half cycle.
- Diode conduction angle = 180° or π radians.
- We can not control the dc output voltage or the average dc load current in a diode rectifier circuit.

Single phase half wave diode rectifier gives an Average dc output voltage $V_{O(dc)} = \frac{V_m}{\pi}$ Single phase full wave diode rectifier gives an Average dc output voltage $V_{O(dc)} = \frac{2V_m}{\pi}$

Applications of Phase Controlled Rectifiers

- DC motor control in steel mills, paper and textile mills employing dc motor drives.
- AC fed traction system using dc traction motor.
- Electro-chemical and electro-metallurgical processes.
- Magnet power supplies.
- Portable hand tool drives.

Classification of Phase Controlled Rectifiers

- Single Phase Controlled Rectifiers.
- Three Phase Controlled Rectifiers.

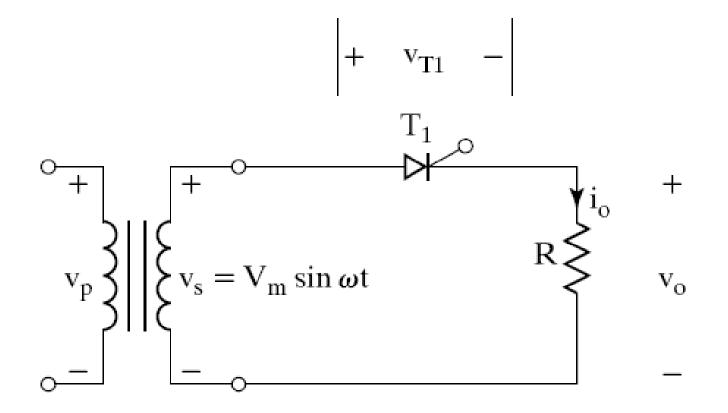
Different types of Single Phase Controlled Rectifiers.

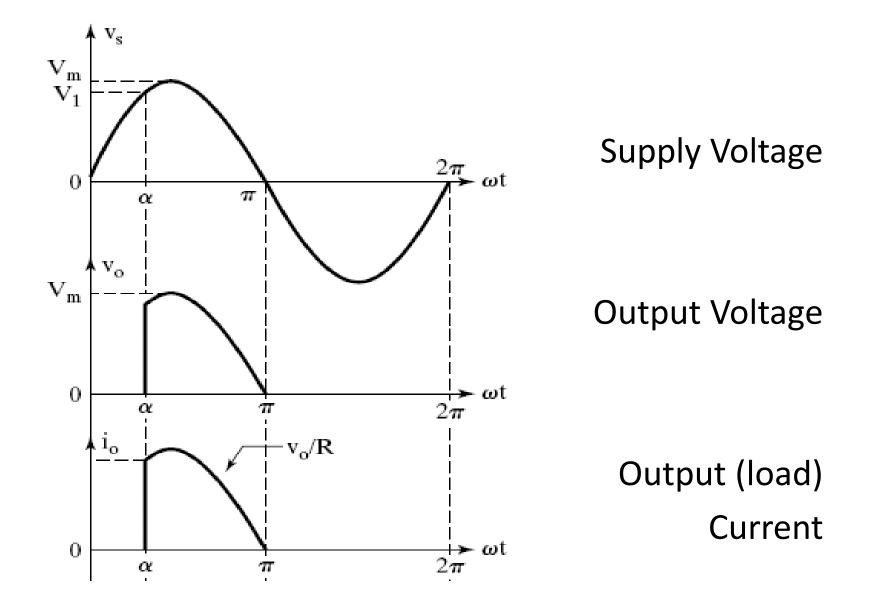
- Half wave controlled rectifiers.
- Full wave controlled rectifiers.
 - Using a center tapped transformer.
 - Full wave bridge circuit.
 - Semi converter.
 - Full converter.

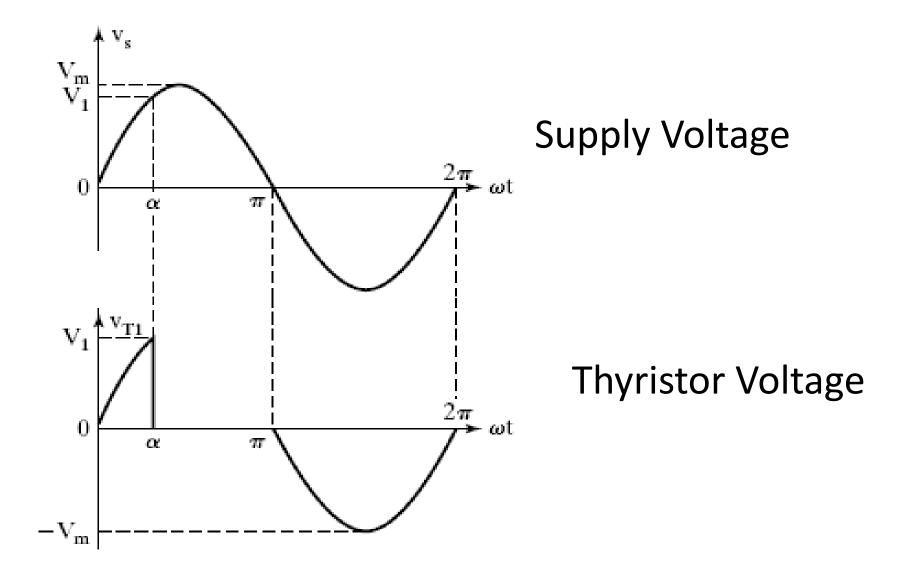
Different Types of Three Phase Controlled Rectifiers

- Half wave controlled rectifiers.
- Full wave controlled rectifiers.
 - Semi converter (half controlled bridge converter).
 - Full converter (fully controlled bridge converter).

Single Phase Half-Wave Thyristor Converter with a Resistive Load







Equations

 $v_s = V_m \sin \omega t = i/p$ ac supply voltage $V_m = \max$. value of i/p ac supply voltage $V_s = \frac{V_m}{\sqrt{2}} = RMS$ value of i/p ac supply voltage

 $v_O = v_L$ = output voltage across the load

When the thyristor is triggered at $\omega t = \alpha$ $v_{0} = v_{L} = V_{m} \sin \omega t; \ \omega t = \alpha \text{ to } \pi$ $i_0 = i_L = \frac{v_0}{R} = \text{Load current}; \quad \omega t = \alpha \text{ to } \pi$ $i_{O} = i_{L} = \frac{V_{m} \sin \omega t}{R} = I_{m} \sin \omega t; \omega t = \alpha \text{ to } \pi$ Where $I_m = \frac{V_m}{R} = \max$. value of load current

To Derive an Expression for the Average (DC) Output Voltage Across The Load

$$V_{O(dc)} = V_{dc} = \frac{1}{2\pi} \int_{0}^{2\pi} v_{O} d(\omega t);$$

$$v_{O} = V_{m} \sin \omega t \text{ for } \omega t = \alpha \text{ to } \pi$$

$$V_{O(dc)} = V_{dc} = \frac{1}{2\pi} \int_{\alpha} V_m \sin \omega t. d(\omega t)$$

$$V_{O(dc)} = \frac{1}{2\pi} \int_{\alpha}^{\pi} V_m \sin \omega t.d(\omega t)$$

$$V_{O(dc)} = \frac{V_m}{2\pi} \int_{\alpha}^{\pi} \sin \omega t . d(\omega t)$$
$$V_{O(dc)} = \frac{V_m}{2\pi} \left[-\cos \omega t \Big/_{\alpha}^{\pi} \right]$$
$$V_{O(dc)} = \frac{V_m}{2\pi} \left[-\cos \pi + \cos \alpha \right]; \ \cos \pi = -1$$

 $V_{O(dc)} = \frac{V_m}{2\pi} [1 + \cos \alpha] ; V_m = \sqrt{2}V_S$

Maximum average (dc) o/p voltage is obtained when $\alpha = 0$ and the maximum dc output voltage $V_{dc(\max)} = V_{dm} = \frac{V_m}{2\pi} (1 + \cos 0); \cos (0) = 1$ $\therefore V_{dc(\max)} = V_{dm} = \frac{V_m}{\pi}$

$$V_{O(dc)} = \frac{V_m}{2\pi} [1 + \cos \alpha] ; V_m = \sqrt{2}V_s$$

The average dc output voltage can be varied by varying the trigger angle α from 0 to a maximum of 180° (π radians) We can plot the control characteristic $(V_{O(dc)} \text{ vs } \alpha)$ by using the equation for $V_{O(dc)}$

Control Characteristic of Single Phase Half Wave Phase **Controlled Rectifier** with **Resistive Load**

The average dc output voltage is given by the expression

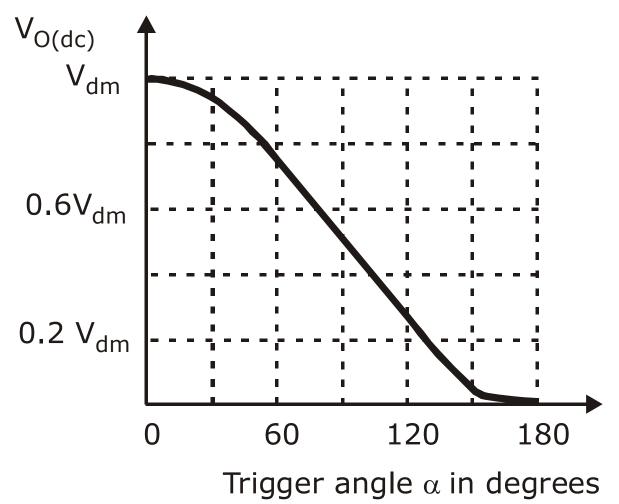
$$V_{O(dc)} = \frac{V_m}{2\pi} \left[1 + \cos \alpha \right]$$

We can obtain the control characteristic by plotting the expression for the dc output voltage as a function of trigger angle α

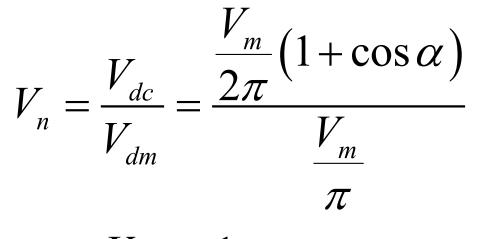
Trigger angle α in degrees	$V_{O(dc)}$	%
0	$V_{dm} = \frac{V_m}{\pi}$	100% $V_{\rm dm}$
30 ⁰	$0.933 V_{dm}$	93.3 % V _{dm}
60°	$0.75 V_{dm}$	$75~\%~V_{_{dm}}$
90 ⁰	$0.5 V_{dm}$	$50~\%~V_{dm}$
120°	$0.25 V_{dm}$	$25~\%~V_{_{dm}}$
150°	$0.06698 \ V_{dm}$	$6.69~\%~V_{_{dm}}$
180°	0	0

$$V_{dm} = rac{V_m}{\pi} = V_{dc(\max)}$$

Control Characteristic



Normalizing the dc output voltage with respect to V_{dm} , the Normalized output voltage



$$V_{n} = \frac{V_{dc}}{V_{dm}} = \frac{1}{2} (1 + \cos \alpha) = V_{dcn}$$

To Derive An Expression for the RMS Value of Output Voltage of a Single Phase Half Wave Controlled Rectifier With Resistive Load

The RMS output voltage is given by

$$V_{O(RMS)} = \left[\frac{1}{2\pi} \int_{0}^{2\pi} v_O^2 d\left(\omega t\right)\right]$$

Output voltage $v_0 = V_m \sin \omega t$; for $\omega t = \alpha$ to π

$$V_{O(RMS)} = \left[\frac{1}{2\pi}\int_{\alpha}^{\pi}V_{m}^{2}\sin^{2}\omega t.d(\omega t)\right]^{\frac{1}{2}}$$

By substituting
$$\sin^2 \omega t = \frac{1 - \cos 2\omega t}{2}$$
, we get
 $V_{O(RMS)} = \left[\frac{1}{2\pi} \int_{\alpha}^{\pi} V_m^2 \frac{(1 - \cos 2\omega t)}{2} d(\omega t)\right]^{\frac{1}{2}}$
 $V_{O(RMS)} = \left[\frac{V_m^2}{4\pi} \int_{\alpha}^{\pi} (1 - \cos 2\omega t) d(\omega t)\right]^{\frac{1}{2}}$
 $V_{O(RMS)} = \left[\frac{V_m^2}{4\pi} \left\{\int_{\alpha}^{\pi} d(\omega t) - \int_{\alpha}^{\pi} \cos 2\omega t d(\omega t)\right\}\right]^{\frac{1}{2}}$

$$\begin{split} V_{O(RMS)} &= \frac{V_m}{2} \left[\frac{1}{\pi} \left\{ \left(\omega t \right) \right/_{\alpha}^{\pi} - \left(\frac{\sin 2\omega t}{2} \right) \right/_{\alpha}^{\pi} \right\} \right]^{\frac{1}{2}} \\ V_{O(RMS)} &= \frac{V_m}{2} \left[\frac{1}{\pi} \left(\left(\pi - \alpha \right) - \frac{\left(\sin 2\pi - \sin 2\alpha \right)}{2} \right) \right]^{\frac{1}{2}}; \sin 2\pi = 0 \\ V_{O(RMS)} &= \frac{V_m}{2} \left[\frac{1}{\pi} \left(\left(\pi - \alpha \right) + \frac{\sin 2\alpha}{2} \right) \right]^{\frac{1}{2}} \\ V_{O(RMS)} &= \frac{V_m}{2\sqrt{\pi}} \left(\left(\pi - \alpha \right) + \frac{\sin 2\alpha}{2} \right)^{\frac{1}{2}} \end{split}$$