Performance Parameters Of
 Phase Controlled Rectifiers

Output dc power (avg. or dc o/p power delivered to the load)
$P_{O(d c)}=V_{O(d c)} \times I_{O(d c)}$; i.e., $P_{d c}=V_{d c} \times I_{d c}$
Where
$V_{O(d c)}=V_{d c}=$ avg./dc value of o / p voltage.
$I_{O(d c)}=I_{d c}=\mathrm{avg} . / \mathrm{dc}$ value of o / p current

Output ac power

$$
P_{O(a c)}=V_{O(R M S)} \times I_{O(R M S)}
$$

Efficiency of Rectification (Rectification Ratio)
Efficiency $\eta=\frac{P_{O(d c)}}{P_{O(a c)}} ; \%$ Efficiency $\eta=\frac{P_{O(d c)}}{P_{O(a c)}} \times 100$
The o / p voltage consists of two components The dc component $V_{O(d c)}$
The ac /ripple component $V_{a c}=V_{r(r m s)}$

The total RMS value of output voltage is given by

$$
V_{O(R M S)}=\sqrt{V_{O(d c)}^{2}+V_{r(r m s)}^{2}}
$$

$$
V_{a c}=V_{r(r m s)}=\sqrt{V_{O(R M S)}^{2}-V_{O(d c)}^{2}}
$$

Form Factor (FF) which is a measure of the shape of the output voltage is given by

$$
F F=\frac{V_{O(R M S)}}{V_{O(d c)}}=\frac{\text { RMS output (load) voltage }}{\text { DC load output (load) voltage }}
$$

The Ripple Factor (RF) w.r.t. o/p voltage w/f

$$
r_{v}=R F=\frac{V_{r(r m s)}}{V_{O(d c)}}=\frac{V_{a c}}{V_{d c}}
$$

$$
r_{v}=\frac{\sqrt{V_{O(R M S)}^{2}-V_{O(d c)}^{2}}}{V_{O(d c)}}=\sqrt{\left[\frac{V_{O(R M S)}}{V_{O(d c)}}\right]^{2}-1}
$$

$$
\therefore \quad r_{v}=\sqrt{F F^{2}-1}
$$

Current Ripple Factor $r_{i}=\frac{I_{r(r m s)}}{I_{O(d c)}}=\frac{I_{a c}}{I_{d c}}$
Where $I_{r(r m s)}=I_{a c}=\sqrt{I_{O(R M S)}^{2}-I_{O(d c)}^{2}}$
$V_{r(p p)}=$ peak to peak ac ripple output voltage

$$
V_{r(p p)}=V_{O(\max)}-V_{O(\min)}
$$

$I_{r(p p)}=$ peak to peak ac ripple load current

$$
I_{r(p p)}=I_{O(\max)}-I_{O(\min)}
$$

Transformer Utilization Factor (TUF)

$$
T U F=\frac{P_{O(d c)}}{V_{S} \times I_{S}}
$$

Where
$V_{S}=$ RMS supply (secondary) voltage
$I_{S}=$ RMS supply (secondary) current

Fundamental current

Where

$v_{S}=$ Supply voltage at the transformer secondary side
$i_{S}=\mathrm{i} / \mathrm{p}$ supply current (transformer secondary winding current)
$i_{S 1}=$ Fundamental component of the i / p supply current
$I_{P}=$ Peak value of the input supply current
$\phi=$ Phase angle difference between (sine wave components) the fundamental components of i / p supply current \& the input supply voltage.

$$
\phi=\text { Displacement angle (phase angle) }
$$

For an RL load

$$
\phi=\text { Displacement angle }=\text { Load impedance angle }
$$

$\therefore \quad \phi=\tan ^{-1}\left(\frac{\omega L}{R}\right)$ for an RL load
Displacement Factor (DF) or
Fundamental Power Factor

$$
D F=\operatorname{Cos} \phi
$$

Harmonic Factor (HF) or

Total Harmonic Distortion Factor ; THD

$$
H F=\left[\frac{I_{S}^{2}-I_{S 1}^{2}}{I_{S 1}^{2}}\right]^{\frac{1}{2}}=\left[\left(\frac{I_{S}}{I_{S 1}}\right)^{2}-1\right]^{\frac{1}{2}}
$$

Where
$I_{S}=$ RMS value of input supply current.
$I_{S 1}=$ RMS value of fundamental component of the i / p supply current.

Input Power Factor (PF)

$$
P F=\frac{V_{S} I_{S 1}}{V_{S} I_{S}} \cos \phi=\frac{I_{S 1}}{I_{S}} \cos \phi
$$

The Crest Factor (CF)

$$
C F=\frac{I_{S(p e a k)}}{I_{S}}=\frac{\text { Peak input supply current }}{\text { RMS input supply current }}
$$

For an Ideal Controlled Rectifier

$$
F F=1 ; \eta=100 \% ; V_{a c}=V_{r(r m s)}=0 ; T U F=1
$$

$$
R F=r_{v}=0 ; H F=T H D=0 ; \quad P F=D P F=1
$$

Single Phase Half Wave

 Controlled Rectifier With AnRL Load

Input Supply Voltage (V_{s}) \&
 Thyristor (Output) Current Waveforms

Output (Load)
 Voltage Waveform

To Derive An Expression For

The Output

(Load) Current, During $\omega t=\alpha$ to β
When Thyristor T_{1} Conducts

Assuming T_{1} is triggered $\omega t=\alpha$, we can write the equation,

$$
L\left(\frac{d i_{O}}{d t}\right)+R i_{O}=V_{m} \sin \omega t ; \alpha \leq \omega t \leq \beta
$$

General expression for the output current,

$$
i_{O}=\frac{V_{m}}{Z} \sin (\omega t-\phi)+A_{1} e^{\frac{-t}{\tau}}
$$

$V_{m}=\sqrt{2} V_{S}=$ maximum supply voltage.
$Z=\sqrt{R^{2}+(\omega L)^{2}}=$ Load impedance.
$\phi=\tan ^{-1}\left(\frac{\omega L}{R}\right)=$ Load impedance angle.
$\tau=\frac{L}{R}=$ Load circuit time constant.
\therefore general expression for the output load current

$$
i_{o}=\frac{V_{m}}{Z} \sin (\omega t-\phi)+A_{1} e^{\frac{-R}{L} t}
$$

Constant A_{1} is calculated from

initial condition $i_{O}=0$ at $\omega t=\alpha ; \mathrm{t}=\left(\frac{\alpha}{\omega}\right)$

$$
\begin{aligned}
& i_{O}=0=\frac{V_{m}}{Z} \sin (\alpha-\phi)+A_{1} e^{\frac{-R}{L} t} \\
& A_{1} e^{\frac{-R}{L} t}=\frac{-V_{m}}{Z} \sin (\alpha-\phi)
\end{aligned}
$$

We get the value of constant A_{1} as

$$
A_{1}=e^{\frac{R(\alpha)}{\omega L}}\left[\frac{-V_{m}}{Z} \sin (\alpha-\phi)\right]
$$

Substituting the value of constant A_{1} in the general expression for i_{o}

$$
i_{O}=\frac{V_{m}}{Z} \sin (\omega t-\phi)+e^{\frac{-R}{\omega L}}(\omega t-\alpha)\left[\frac{-V_{m}}{Z} \sin (\alpha-\phi)\right]
$$

\therefore we obtain the final expression for the inductive load current

$$
\begin{gathered}
i_{O}=\frac{V_{m}}{Z}\left[\sin (\omega t-\phi)-\sin (\alpha-\phi) e^{\frac{-R}{\omega L}(\omega t-\alpha)}\right] ; \\
\text { Where } \alpha \leq \omega t \leq \beta
\end{gathered}
$$

Extinction angle β can be calculated by using the condition that $i_{O}=0$ at $\omega t=\beta$
$i_{O}=\frac{V_{m}}{Z}\left[\sin (\omega t-\phi)-\sin (\alpha-\phi) e^{\frac{-R}{\omega L}(\omega t-\alpha)}\right]=0$
$\therefore \sin (\beta-\phi)=e^{\frac{-R}{\omega L}(\beta-\alpha)} \times \sin (\alpha-\phi)$
β can be calculated by solving the above eqn.

To Derive An Expression

For
Average (DC) Load Voltage of a Single Half Wave Controlled Rectifier with RL Load

$$
\begin{aligned}
& V_{O(d c)}=V_{L}=\frac{1}{2 \pi} \int_{0}^{2 \pi} v_{O} \cdot d(\omega t) \\
& V_{O(d c)}=V_{L}=\frac{1}{2 \pi}\left[\int_{0}^{\alpha} v_{O} \cdot d(\omega t)+\int_{\alpha}^{\beta} v_{O} \cdot d(\omega t)+\int_{\beta}^{2 \pi} v_{O} \cdot d(\omega t)\right] \\
& v_{O}=0 \text { for } \omega t=0 \text { to } \alpha \& \text { for } \omega t=\beta \text { to } 2 \pi \\
& \therefore V_{O(d c)}=V_{L}=\frac{1}{2 \pi}\left[\int_{\alpha}^{\beta} v_{o} \cdot d(\omega t)\right] ; \\
& v_{O}=V_{m} \sin \omega t \text { for } \omega t=\alpha \text { to } \beta
\end{aligned}
$$

$$
\begin{aligned}
& V_{O(d c)}=V_{L}=\frac{1}{2 \pi}\left[\int_{\alpha}^{\beta} V_{m} \sin \omega t . d(\omega t)\right] \\
& \left.V_{O(d c)}=V_{L}=\frac{V_{m}}{2 \pi}[-\cos \omega t)_{\alpha}^{\beta}\right] \\
& V_{O(d c)}=V_{L}=\frac{V_{m}}{2 \pi}(\cos \alpha-\cos \beta) \\
& \therefore V_{O(d c)}=V_{L}=\frac{V_{m}}{2 \pi}(\cos \alpha-\cos \beta)
\end{aligned}
$$

Effect of Load
Inductance on the Output

During the period $\omega t=\pi$ to β the
instantaneous o / p voltage is negative and this reduces the average or the dc output voltage when compared to a purely
resistive load.

Average DC Load Current

$$
I_{O(d c)}=I_{L(A v g)}=\frac{V_{O(d c)}}{R_{L}}=\frac{V_{m}}{2 \pi R_{L}}(\cos \alpha-\cos \beta)
$$

Single Phase Half Wave Controlled Rectifier With RL Load

 \& Free Wheeling Diode

The average output voltage
$V_{d c}=\frac{V_{m}}{2 \pi}[1+\cos \alpha]$ which is the same as that
of a purely resistive load.
The following points are to be noted
For low value of inductance, the load current tends to become discontinuous.

During the period α to π
the load current is carried by the SCR.
During the period π to β load current is carried by the free wheeling diode.
The value of β depends on the value of
R and L and the forward resistance of the FWD.

For Large Load Inductance the load current does not reach zero, \& we obtain continuous load current

