Single-phase full-bridge inverter

Operational Details

- Consists of 4 choppers and a 3-wire DC source
- Q_1-Q_2 and Q_3-Q_4 switched on and off alternately
- Need to isolate the gate signal for Q₁ and Q₃ (upper)
- Each pair provide opposite polarity of V_sacross the load

$$Q_1 - Q_2$$
 on, $Q_3 - Q_4$ off, $v_o = V_s$

$$Q_{3}-Q_{4} \text{ on, } Q_{1}-Q_{2} \text{ off, } v_{o} = -V_{s}$$

When the load is highly inductive Turn Q_1-Q_2 off $-Q_3-Q_4$ off

Turn Q_3-Q_4 off – Q_1-Q_2 off

Load current for a highly inductive load

