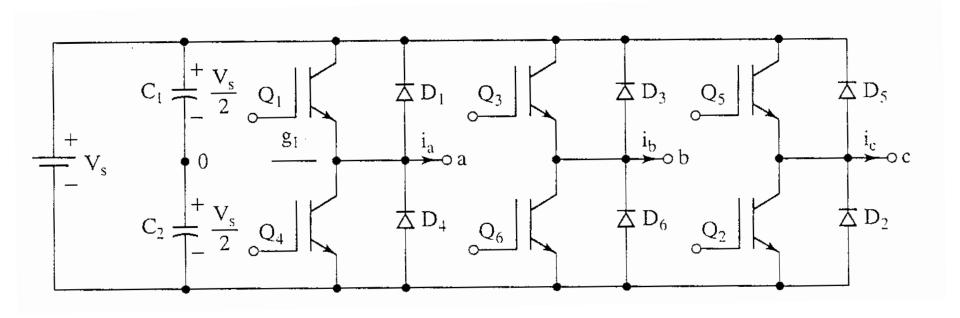

Three-Phase Inverters

Consider three single-phase inverters in parallel, driven 120° apart.

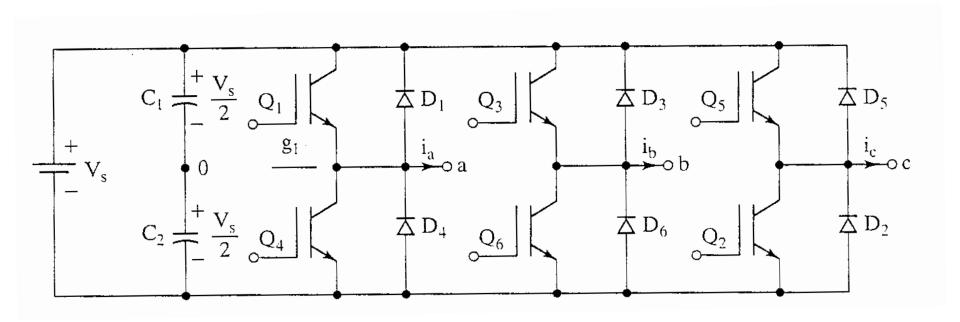
Three-Phase Inverter (continued)

Three single-phase full bridge inverters


12 transistors, 12 diodes, 3 transformers

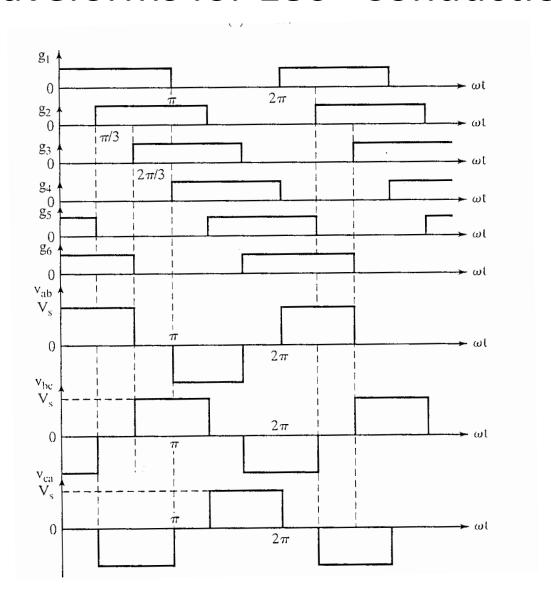
Could it be simpler?

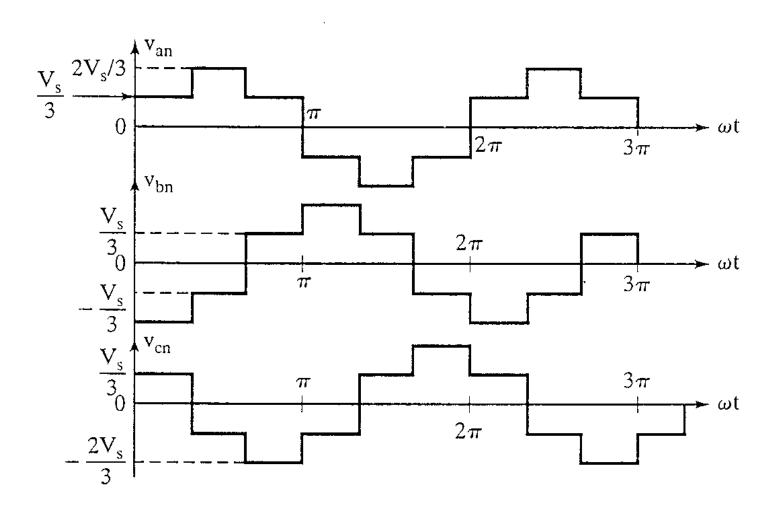
Alternative (Preferred) Configuration


6 transistors, 6 diodes for 120° or 180°

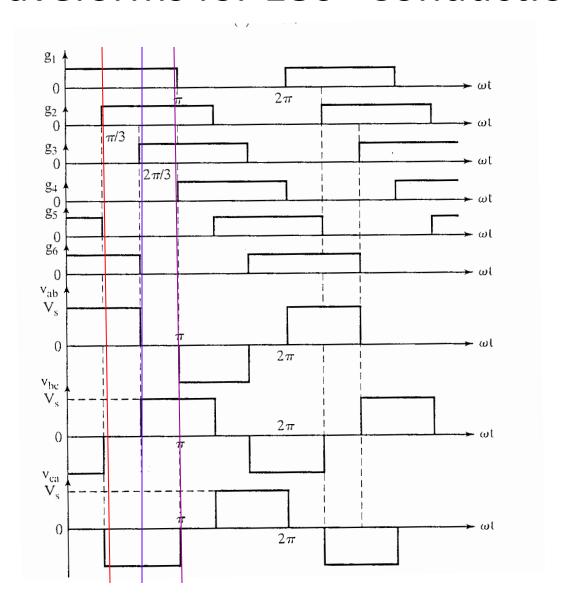
conduction

180° Conduction

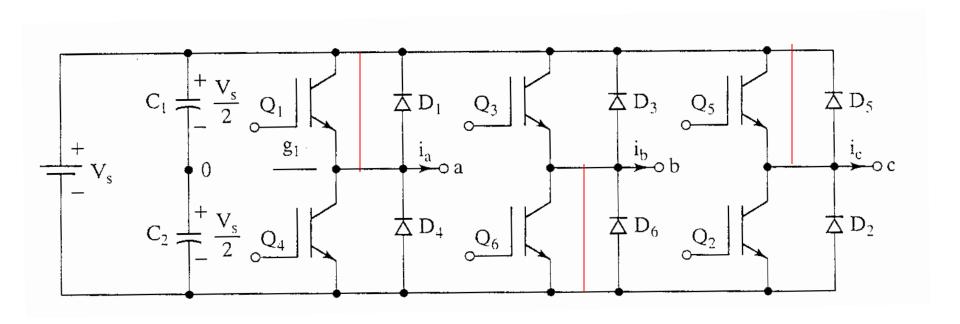

Three transistors ON at a time


Summary Table

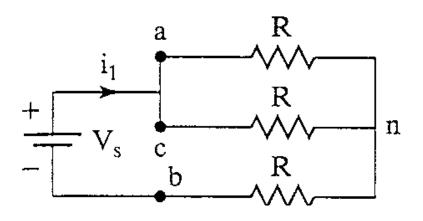
State	State No.	Switch States	v_{ab}	v_{bc}	v_{ca}
S_1 , S_2 , and S_6 are on and S_4 , S_5 , and S_3 are off	1	100	V_{S}	0	$-V_S$
S_2 , S_3 , and S_1 are on and S_5 , S_6 , and S_4 are off	2	110	0	$V_{\mathcal{S}}$	$-V_S$
S_3 , S_4 , and S_2 are on and S_6 , S_4 , and S_5 are off	3	010	$-V_S$	$V_{\mathcal{S}}$. 0
S_4 , S_5 , and S_3 are on and S_1 , S_2 , and S_6 are off	4	011	$-V_{\mathcal{S}}$	0	V_{S}
S_5 , S_6 , and S_4 are on and S_2 , S_3 , and S_1 are off	5	001	0	$-V_S$	V_{S}
S_6 , S_1 , and S_5 are on and S_3 , S_4 , and S_2 are off	6	101	$V_{\mathcal{S}}$	$-V_S$	C
S_1 , S_3 , and S_5 are on and S_4 , S_6 , and S_2 are off	7	111	0	0	C
S_4 , S_6 , and S_2 are on and S_1 , S_3 , and S_5 are off	8	000	0	0	(


Waveforms for 180° Conduction

Phase Voltages for 180° Conduction


Waveforms for 180° Conduction

Summary Table


TABLE 6.2 Switch States for Three-Phase Voltage-Source Inverter (VSI)					
State	State No.	Switch States	v_{ab}	v_{bc}	v_{ca}
$\overline{S_1, S_2, \text{ and } S_6 \text{ are on}}$	1	100	$V_{\mathcal{S}}$	0	$-V_S$
and S_4 , S_5 , and S_3 are off					
S_2 , S_3 , and S_1 are on	2	110	0	$V_{\mathcal{S}}$	$-V_S$
and S_5 , S_6 , and S_4 are off					
S_3 , S_4 , and S_2 are on	. 3	010	$-V_S$	$V_{\mathcal{S}}$. 0
and S_6 , S_1 , and S_5 are off					
S_4 , S_5 , and S_3 are on	4	011	$-V_{\mathcal{S}}$	0	$V_{\mathcal{S}}$
and S_1 , S_2 , and S_6 are off					
S_5 , S_6 , and S_4 are on	5	001	0	$-V_{\mathcal{S}}$	$V_{\mathcal{S}}$
and S_2 , S_3 , and S_1 are off					
S_6 , S_1 , and S_5 are on	6	101	$V_{\mathcal{S}}$	$-V_S$	0
and S_3 , S_4 , and S_2 are off					
S_1 , S_3 , and S_5 are on	7	111	0	0	0
and S_4 , S_6 , and S_2 are off					
S_4 , S_6 , and S_2 are on	8	000	0	0	0
and S_1 , S_3 , and S_5 are off					

Mode 1 Operation

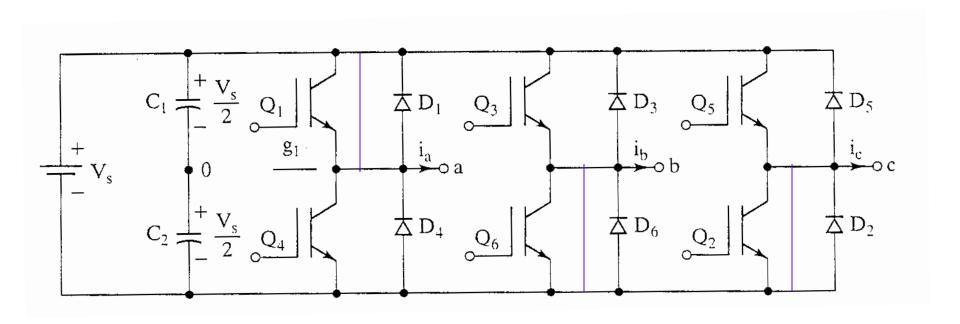
Mode 1 Operation

$$0 \le \omega t \le \frac{\pi}{3}$$

 Q_1 , Q_5 , Q_6 conduct

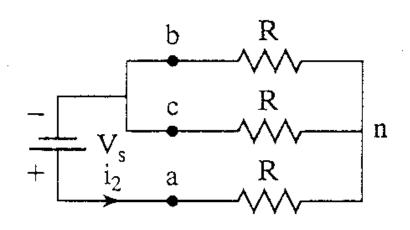
$$R_{eq} = R + \frac{R}{2} = \frac{3R}{2}$$

$$i_{1} = \frac{V_{s}}{R_{eq}} = \frac{2V_{s}}{3R}$$


$$v_{an} = v_{cn} = \frac{i_{1}R}{2} = \frac{V_{s}}{3}$$

$$v_{bn} = -i_{1}R = \frac{-2V_{s}}{3}$$

Summary Table


State	State No.	Switch States	v_{ab}	v_{bc}	v_{ca}
S_1 , S_2 , and S_6 are on and S_4 , S_5 , and S_3 are off	1	100	$V_{\mathcal{S}}$	0	$-V_S$
S_2 , S_3 , and S_1 are on and S_5 , S_6 , and S_4 are off	2	110	0	$V_{\mathcal{S}}$	$-V_S$
S_3 , S_4 , and S_2 are on and S_6 , S_4 , and S_5 are off	3	010	$-V_S$	$V_{\mathcal{S}}$. 0
S_4 , S_5 , and S_3 are on and S_1 , S_2 , and S_6 are off	4	011	$-V_{\mathcal{S}}$	0	V_S
S_5 , S_6 , and S_4 are on and S_2 , S_3 , and S_1 are off	5	001	0	$-V_S$	$V_{\mathcal{S}}$
S_6 , S_1 , and S_5 are on and S_3 , S_4 , and S_2 are off	6	101	$V_{\mathcal{S}}$	$-V_S$	0
S_1 , S_3 , and S_5 are on and S_4 , S_6 , and S_2 are off	7	111	0	0	0
S_4 , S_6 , and S_2 are on and S_1 , S_3 , and S_5 are off	8	000	0	0	0

Mode 2 Operation

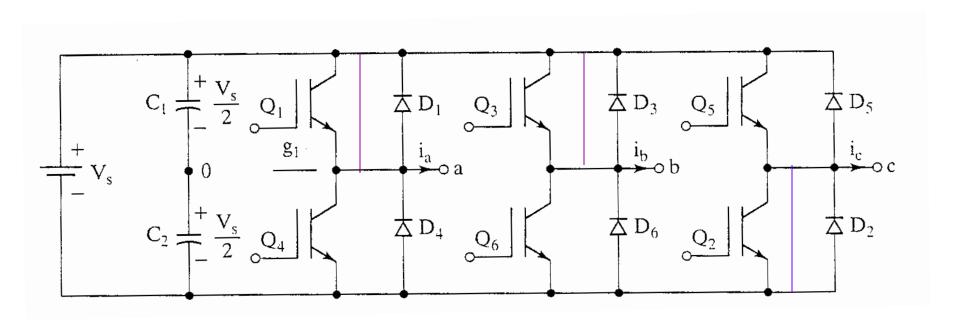
Mode 2 Operation

$$\frac{\pi}{3} \le \omega t \le \frac{2\pi}{3}$$

 Q_1 , Q_2 , Q_6 conduct

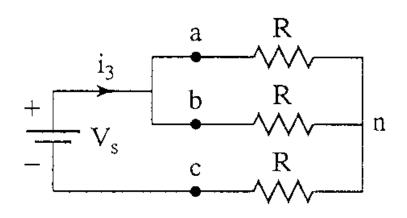
$$R_{eq} = R + \frac{R}{2} = \frac{3R}{2}$$

$$i_2 = \frac{V_s}{R_{eq}} = \frac{2V_s}{3R}$$


$$v_{an} = i_2 R = \frac{2V_s}{3}$$

$$v_{bn} = v_{cn} = \frac{-i_2 R}{2} = \frac{-V_s}{3}$$

Summary Table

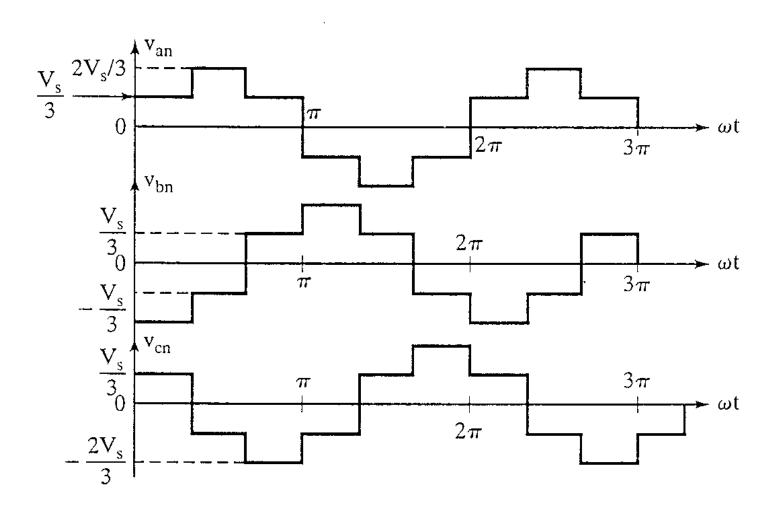

State	State No.	Switch States	v_{ab}	v_{bc}	v_{ca}
S_1 , S_2 , and S_6 are on and S_4 , S_5 , and S_3 are off	1	100	$V_{\mathcal{S}}$	0	$-V_S$
S_2 , S_3 , and S_1 are on and S_5 , S_6 , and S_4 are off	2	110	0	$V_{\mathcal{S}}$	$-V_S$
S_3 , S_4 , and S_2 are on and S_6 , S_1 , and S_5 are off	3	010	$-V_S$	$V_{\mathcal{S}}$. 0
S_4 , S_5 , and S_3 are on and S_1 , S_2 , and S_6 are off	4	011	$-V_S$	0	V_S
S_5 , S_6 , and S_4 are on and S_2 , S_3 , and S_1 are off	5	001	0	$-V_S$	V_S
S_6 , S_1 , and S_5 are on and S_3 , S_4 , and S_2 are off	6	101	V_{S}	$-V_S$	0
S_1 , S_3 , and S_5 are on and S_4 , S_6 , and S_2 are off	7	111	0	0	0
S_4 , S_6 , and S_2 are on and S_1 , S_3 , and S_5 are off	8	000	0	0	0

Mode 3 Operation

Mode 3 Operation

$$\frac{2\pi}{3} \le \omega t \le \pi$$

 Q_1 , Q_2 , Q_3 conduct


$$R_{eq} = R + \frac{R}{2} = \frac{3R}{2}$$

$$i_3 = \frac{V_s}{R_{eq}} = \frac{2V_s}{3R}$$

$$v_{an} = v_{bn} = \frac{i_3}{2}$$

$$v_{cn} = i_3 R = \frac{-2V_s}{3}$$

Phase Voltages for 180° Conduction

Fourier Series for Line-to-Line Voltages

$$v_{ab} = \frac{a_o}{2} + \sum_{n=1}^{\infty} (a_n \cos(n\omega t) + b_n \sin(n\omega t))$$

$$b_n = \frac{1}{\pi} \left[\int_{\frac{-5\pi}{6}}^{\frac{5\pi}{6}} -V_s d(\omega t) + \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} V_s d(\omega t) \right]$$

$$b_n = \frac{4V_s}{n\pi} \sin(\frac{n\pi}{2}) \sin(\frac{n\pi}{3})$$

$$v_{ab} = \sum_{n=1,3,5,...}^{\infty} \frac{4V_s}{n\pi} \sin \frac{n\pi}{3} \sin n(\omega t + \frac{\pi}{6})$$

For the other Line-to-Line Voltages

$$v_{bc} = \sum_{n=1,3,5,...}^{\infty} \frac{4V_s}{n\pi} \sin \frac{n\pi}{3} \sin n(\omega t - \frac{\pi}{2})$$

$$v_{ca} = \sum_{n=1,3,5,...}^{\infty} \frac{4V_s}{n\pi} \sin \frac{n\pi}{3} \sin n(\omega t - \frac{7\pi}{6})$$

Line-to-Line rms Voltage

$$V_L = \left[\frac{2}{2\pi} \int_0^{\frac{2\pi}{3}} V_s^2 d(\omega t)\right]^{\frac{1}{2}}$$

$$V_L = \sqrt{\frac{2}{3}}V_s = 0.8165V_s$$

rms value of the nth Component

$$V_{Ln} = \frac{4V_s}{\sqrt{2}n\pi} \sin\frac{n\pi}{3}$$

n=1 Fundamental Component

$$V_{L1} = \frac{4V_s \sin 60^{\circ}}{\sqrt{2}\pi} = 0.7797V_s$$

Line-to-Neutral Voltages

$$V_p = \frac{V_L}{\sqrt{3}} = \frac{\sqrt{2}V_s}{3} = 0.4714V_s$$

Phase Voltages (Y-connected load)

$$v_{aN} = \sum_{n=1,3,5,...}^{\infty} \frac{4V_s}{\sqrt{3}n\pi} \sin(\frac{n\pi}{3}) \sin(n\omega t)$$

$$v_{bN} = \sum_{n=1,3,5,...}^{\infty} \frac{4V_s}{\sqrt{3}n\pi} \sin(\frac{n\pi}{3}) \sin n(\omega t - \frac{2\pi}{3})$$

$$v_{cN} = \sum_{n=1,3,5,...}^{\infty} \frac{4V_s}{\sqrt{3}n\pi} \sin(\frac{n\pi}{3}) \sin n(\omega t - \frac{4\pi}{3})$$

Line Current for an RL load

$$i_{a} = \sum_{n=1,3,5,\dots}^{\infty} \left[\frac{4V_{s}}{\sqrt{3} \left[n\pi \sqrt{R^{2} + (n\omega L)^{2}} \right]} \sin \frac{n\pi}{3} \right] \sin(n\omega t - \theta_{n})$$

$$\theta_{n} = \tan^{-1} \left(\frac{n\omega L}{R} \right)$$

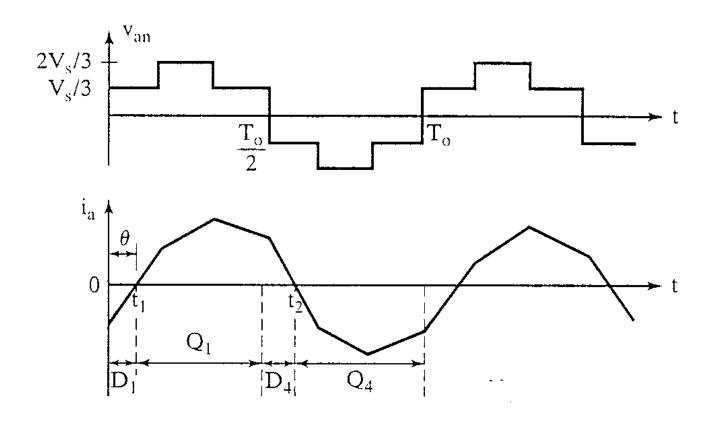
DC Supply Current

$$v_s i_s = v_{ab}(t)i_a(t) + v_{bc}(t)i_b(t) + v_{ca}(t)i_c(t)$$

• • • •

$$I_s = 3\frac{V_{o1}}{V_s}I_o\cos(\theta_1)$$

$$I_s = \sqrt{3} \frac{V_{o1}}{V_s} I_L \cos(\theta_1)$$


 $I_L = \sqrt{3}I_o$ is the rms load line current

V₀₁= fundamental rms output line voltage

I_o is the rms load phase current

 Θ_1 = the load impedance angle at the fundamental frequency

Three-Phase Inverter with RL Load

