1. What is modulation?

 Modulation is the process of <u>putting information</u> onto a high frequency carrier for transmission (frequency translation).

Fig. Process of Modulation

• Once this information is received, the <u>low frequency</u> <u>information must be removed from the high frequency</u> carrier. This process is known as "<u>*Demodulation*</u>".

2. What are the reasons for modulation?

2. What are the reasons for modulation?

1. **Frequency division multiplexing** (<u>To support multiple</u> <u>transmissions via a single channel</u>)

To avoid *interference*

2. Practicality of Antennas

Transmitting very low frequencies require antennas with miles in wavelength

3. What are the Different of Modulation Methods?

1. Analogue modulation- The modulating signal and carrier both are analogue signals

Examples: Amplitude Modulation (AM), Frequency Modulation (FM), Phase Modulation (PM)

2. Pulse modulation- The modulating signal is an analogue signal but Carrier is a train of pulses

Examples : Pulse amplitude modulation (PAM), Pulse width modulation (PWM), Pulse position modulation (PPM)

3.What are the Different of Modulation Methods?

3. Digital to Analogue modulation- The modulating signal is a digital signal, but the carrier is an analogue signal.

Examples: Amplitude Shift Keying (ASK), FSK, Phase Shift Keying (PSK)

4. Digital modulation -

Examples: Pulse Code Modulation, Delta Modulation, Adaptive Delta Modulation

ANALOG AND DIGITAL

Analog-to-analog conversion is the representation of analog information by an analog signal. One may ask why we need to modulate an analog signal; it is already analog. Modulation is needed if the medium is bandpass in nature or if only a bandpass channel is available to us.

Topics discussed in this section:

Amplitude Modulation Frequency Modulation Phase Modulation

Figure Types of analog-to-analog modulation

Figure Amplitude modulation

The total bandwidth required for AM can be determined from the bandwidth of the audio signal: $B_{AM} = 2B$.

Figure AM band allocation

The total bandwidth required for FM can be determined from the bandwidth of the audio signal: $B_{FM} = 2(1 + \beta)B$.

Figure Frequency modulation

Amplitude

Figure FM band allocation

Figure Phase modulation

Amplitude

Note

The total bandwidth required for PM can be determined from the bandwidth and maximum amplitude of the modulating signal: $B_{PM} = 2(1 + \beta)B.$