4. What are the Basic Types of Analogue Modulation Methods ?

Consider the carrier signal below:

 $s_c(t) = A_c(t) \cos(2\pi f_c t + \theta)$

1. Changing of the <u>carrier amplitude $A_{\underline{c}}(\underline{t})$ </u> produces

<u>Amplitude Modulation signal (AM)</u>

2. Changing of the carrier <u>frequency</u> $\underline{\mathbf{f}}_{\mathbf{c}}$ produces

Frequency Modulation signal (FM)

Changing of the carrier <u>phase θ</u> produces
Phase Modulation signal (PM)

Analogue Modulation Methods

5. What are the different Forms of Amplitude Modulation ?

5. What are the different Forms of Amplitude Modulation ?

- 1. **Conventional Amplitude** Modulation **(DSB-LC)** (*Alternatively known as* <u>*Full AM*</u> or Double Sideband with Large carrier (DSB-LC) modulation
- 2. Double Side Band Suppressed Carrier (DSB-SC) modulation
- 3. Single Sideband (SSB) modulation
- 4. Vestigial Sideband (VSB) modulation

Conventional Amplitude Modulation (Full AM)

6. Derive the Frequency Spectrum for Full-AM Modulation (DSB-LC)

6. Derive the Frequency Spectrum for Full-AM Modulation (DSB-LC)

1 The <u>carrier signal</u> is

$$s_c(t) = A_c \cos(\omega_c t)$$
 where $\omega_c = 2\pi f_c$

2 In the same way, a <u>modulating signal (information</u> <u>signal</u>) can also be expressed as

$$s_m(t) = A_m \cos \omega_m t$$

3 The amplitude-modulated wave can be expressed as

$$s(t) = \left[A_c + s_m(t)\right]\cos(\omega_c t)$$

4 By substitution

$$s(t) = \left[A_c + A_m \cos(\omega_m t)\right] \cos(\omega_c t)$$

5 The modulation index.

$$m = \frac{A_m}{A_c}$$

6 Therefore The full AM signal may be written as

$$s(t) = A_c (1 + m\cos(\omega_m t))\cos(\omega_c t)$$

$\cos A \cos B = 1/2[\cos(A+B) + \cos(A-B)]$

$$s(t) = A_c(\cos \omega_c t) + \frac{mA_c}{2}\cos(\omega_c + \omega_m)t + \frac{mA_c}{2}\cos(\omega_c - \omega_m)t$$

7. Draw the Frequency Spectrum of the above AM signal and calculate the Bandwidth

7. Draw the Frequency Spectrum of the above AM signal and calculate the Bandwidth

8. Draw Frequency Spectrum for a complex input signal with AM

8. Draw Frequency Spectrum for a complex input signal with AM

Frequency Spectrum of an AM signal

The frequency spectrum of AM waveform contains three parts:

- 1. A component at the <u>carrier</u> frequency f_c
- 2. An <u>upper side band</u> (USB), whose highest frequency component is at $f_c + f_m$
- 3. A lower side band (LSB), whose highest frequency component is at $f_c f_m$

The bandwidth of the modulated waveform is twice the information signal bandwidth.

 Because of the two side bands in the frequency spectrum its often called <u>Double Sideband with Large Carrier</u>.(DSB-LC)

• The information in the base band (information) signal is <u>duplicated in the LSB and USB</u> and the carrier conveys no information.

We have an audio signal with a bandwidth of 5 KHz. What is the bandwidth needed if we modulate the signal using AM?

We have an audio signal with a bandwidth of 5 KHz. What is the bandwidth needed if we modulate the signal using AM?

An AM signal requires twice the bandwidth of the original signal: BW = $2 \times 5 \text{ KHz} = 10 \text{ KHz}$

AM Radio Band

9. What is the significance of modulation index ?

- **m** is merely defined as a parameter, which determines the amount of modulation.
- What is the degree of modulation required to establish a desirable AM communication link?

Answer is to maintain $\underline{m < 1.0}$ (m < 100%).

• This is important <u>for successful retrieval</u> of the original transmitted information at the receiver end.

9. What is the significance of modulation index ?

Modulation carrier and envelope detector outputs for various values of the modulation index

 $\mu = 0.5$

 $\boldsymbol{\mu}=\boldsymbol{1.0}$

 $\mu = 1.5$

• If the amplitude of the <u>modulating signal is higher than the</u> <u>carrier</u> amplitude, which in turn implies the modulation index $m \ge 1.0(100\%)$ This will cause <u>severe distortion</u> to the modulated signal.

10. Calculate the power efficiency of AM signals