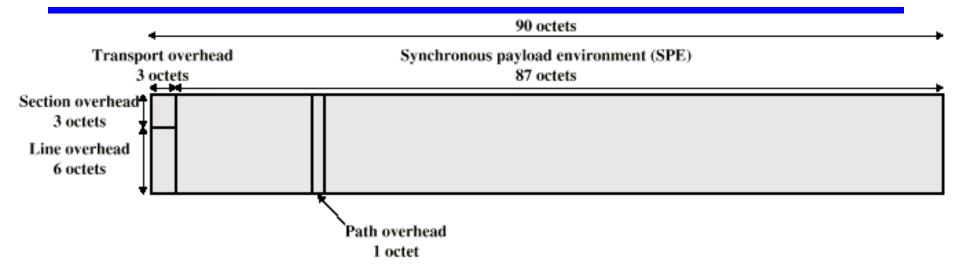

Digital Carrier Systems (2)

- For voice each channel contains one word of digitized data (PCM, 8000 samples per sec)
 - —Data rate 8000x193 = 1.544Mbps
 - —Five out of six frames have 8 bit PCM samples
 - —Sixth frame is 7 bit PCM word plus signaling bit
 - Signaling bits form stream for each channel containing control and routing info
- Same format for digital data
 - -23 channels of data
 - 7 bits per frame plus indicator bit for data or systems control
 - —24th channel is sync

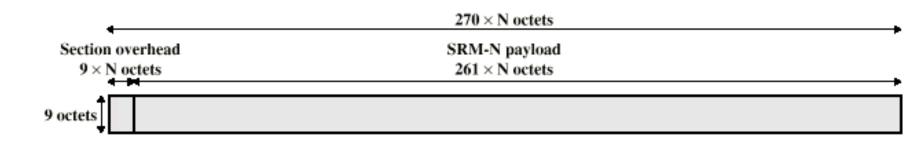
Mixed Data

- DS-1 can carry mixed voice and data signals
- 24 channels used
- No sync byte
- Can also interleave DS-1 channels
 - —Ds-2 is four DS-1 giving 6.312Mbps

DS-1 Transmission Format


Notes:

- 1. The first bit is a framing bit, used for synchronization.
- 2. Voice channels:
 - 8-bit PCM used on five of six frames.
 - 7-bit PCM used on every sixth frame; bit 8 of each channel is a signaling bit.
- Data channels:
 - Channel 24 is used for signaling only in some schemes.
 - Bits 1-7 used for 56 kbps service
 - Bits 2-7 used for 9.6, 4.8, and 2.4 kbps service.


SONET/SDH

- Synchronous Optical Network (ANSI)
- Synchronous Digital Hierarchy (ITU-T)
- Compatible
- Signal Hierarchy
 - Synchronous Transport Signal level 1 (STS-1) or Optical Carrier level 1 (OC-1)
 - —51.84Mbps
 - —Carry DS-3 or group of lower rate signals (DS1 DS1C DS2) plus ITU-T rates (e.g. 2.048Mbps)
 - —Multiple STS-1 combined into STS-N signal
 - —ITU-T lowest rate is 155.52Mbps (STM-1)

SONET Frame Format

(a) STS-1 frame format

SONET STS-1 Overhead Octets

(Framing	Framing	STS-ID
	A1	A2	C1
Section	BIP-8	Orderwire	User
Overhead	B1	E1	F1
(DataCom	DataCom	DataCom
	D1	D2	D3
(Pointer	Pointer	Pointer
	H1	H2	Action H3
1	BIP-8	APS	APS
	B2	K1	K2
Line	DataCom	DataCom	DataCom
	D4	D5	D6
Overhead	DataCom	DataCom	DataCom
	D7	D8	D9
1	DataCom	DataCom	DataCom
	D10	D11	D12
(Growth	Growth	Orderwire
	Z1	Z2	E2

Trace
J1
BIP-8
В3
Signal
Label C2
Path
Status G1
User
F2
Multiframe
H4
Growth
Z3
Growth
Z4
Growth
Z5

(a) Transport Overhead

(b) Path Overhead

Statistical TDM

- In Synchronous TDM many slots are wasted
- Statistical TDM allocates time slots dynamically based on demand
- Multiplexer scans input lines and collects data until frame full
- Data rate on line lower than aggregate rates of input lines

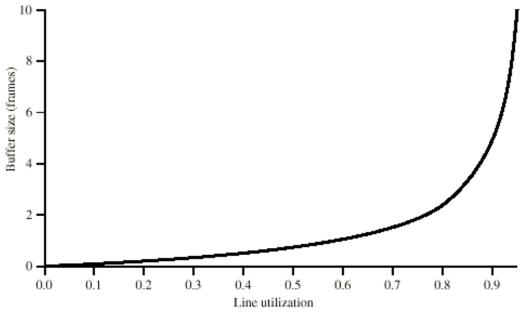
Statistical TDM Frame Formats

Flag Address Control Statistical TDM subframe FCS Flag

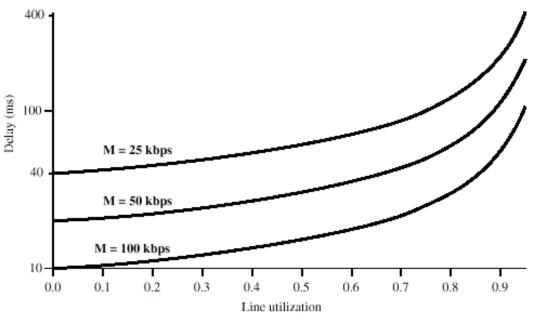
(a) Overall frame

Address Data

(b) Subframe with one source per frame


Address Length Data • • • Address Length Data

(c) Subframe with multiple sources per frame


Performance

- Output data rate less than aggregate input rates
- May cause problems during peak periods
 - —Buffer inputs
 - —Keep buffer size to minimum to reduce delay

Buffer Size and **Delay**

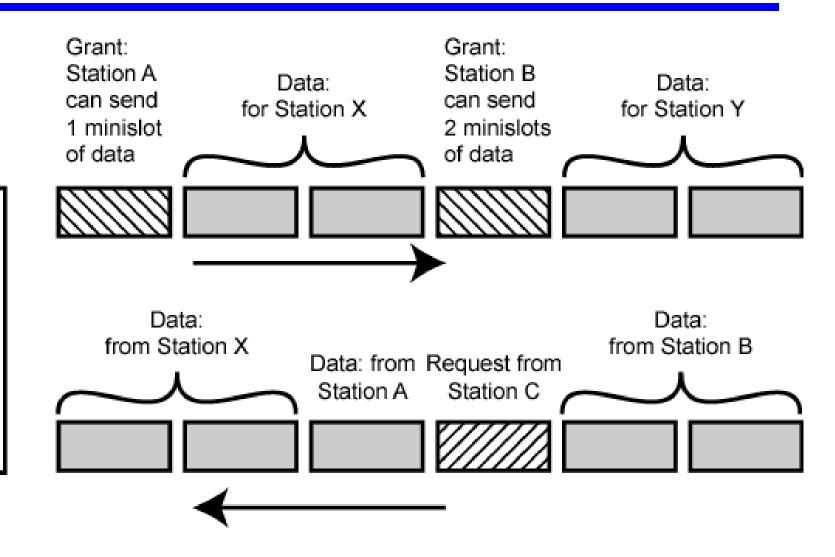
(a) Mean buffer size versus utilization

(a) Mean delay versus utilization

Cable Modem Outline

- Two channels from cable TV provider dedicated to data transfer
 - One in each direction
- Each channel shared by number of subscribers
 - Scheme needed to allocate capacity
 - Statistical TDM

Cable Modem Operation


Downstream

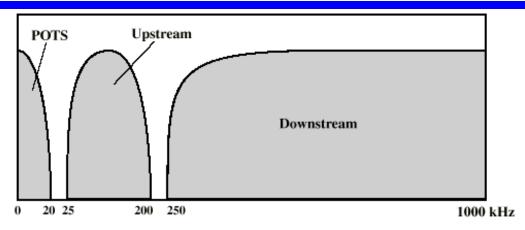
- Cable scheduler delivers data in small packets
- If more than one subscriber active, each gets fraction of downstream capacity
 - May get 500kbps to 1.5Mbps
- Also used to allocate upstream time slots to subscribers

Upstream

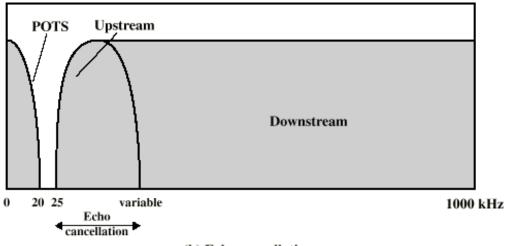
- User requests timeslots on shared upstream channel
 - Dedicated slots for this
- Headend scheduler sends back assignment of future tme slots to subscriber

Cable Modem Scheme

Headend Scheduler


Asymmetrical Digital Subscriber Line

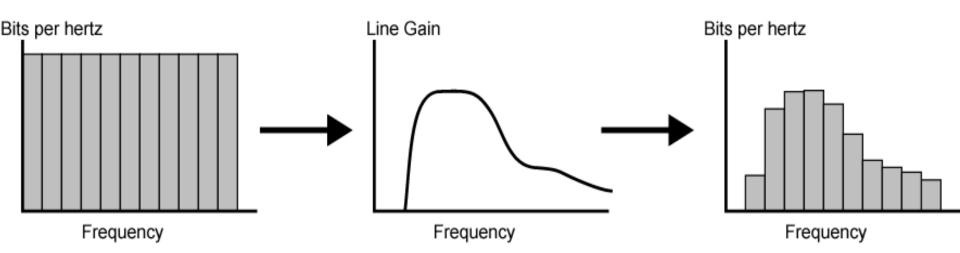
- ADSL
- Link between subscriber and network
 - —Local loop
- Uses currently installed twisted pair cable
 - —Can carry broader spectrum
 - —1 MHz or more


ADSL Design

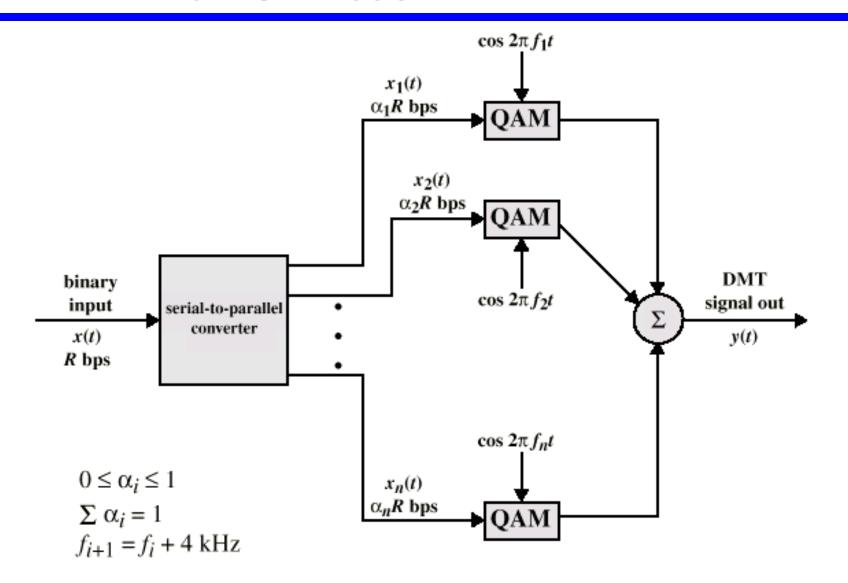
- Asymmetric
 - —Greater capacity downstream than upstream
- Frequency division multiplexing
 - —Lowest 25kHz for voice
 - Plain old telephone service (POTS)
 - —Use echo cancellation or FDM to give two bands
 - —Use FDM within bands
- Range 5.5km

ADSL Channel Configuration

(a) Frequency-division multiplexing



(b) Echo cancellation


Discrete Multitone

- DMT
- Multiple carrier signals at different frequencies
- Some bits on each channel
- 4kHz subchannels
- Send test signal and use subchannels with better signal to noise ratio
- 256 downstream subchannels at 4kHz (60kbps)
 - —15.36MHz
 - —Impairments bring this down to 1.5Mbps to 9Mbps

DTM Bits Per Channel Allocation

DMT Transmitter

