FM Threshold Effect

The composite signal at the frequency discriminator input $x(t) = [A_c + n_I(t)]\cos(2\pi f_c t) - n_Q(t)\sin(2\pi f_c t) \quad (2.1)$ $\theta(t) = \tan^{-1}\frac{n_Q(t)}{A_c + n_I(t)}$

Occasionally, P_1 may sweep around the origin, $\theta(t)$ increases or decreases 2π

Example

Illustrating impulse ike components in θ' (t) = dθ(t)/dt produced by changes of 2π in θ(t); (a) and (b) are graphs of θ (t) and θ' (t), respectively.

Threshold Effect

• Dependence of output signalto-noise ratio on input carrierto-noise ratio for FM receiver. In curve I, the average output noise power is calculated assuming an unmodulated carrier. In curve II, the average output noise power is calculated assuming a sinusoidally modulated carrier. Both curves I and II are calculated from theory.

Comparison of modulation systems

				-			
Туре	$b = B_T / W$	$(S/N)_D/\gamma$	γ_{th}	DC	Complexity	Comments	Typical applications
Baseband	1	1		No†	Minor	No modulation	Short-haul links
AM	2	$\frac{\mu^2 S_x}{1+\mu^2 S_x}$	20	No	Minor	Envelope detection $\mu \leq 1$	Broadcast ratio
DSB	2	1		Yes	Major	Synchronous detection	Analog data, multiplexing
SSB	1	1		No	Moderate	Synchronous detection	Point-to-point voice, multiplexing
VSB	1+	1		Yes	Major	Synchronous detection	Digital data
VSB + C	1+	$\frac{\mu^2 S_x}{1+\mu^2 S_x}$	20	Yes‡	Moderate	Envelope detection $\mu < 1$	Television video
PM§	$2M(\phi_{\Delta})$	$\phi_{\Delta}^2 S_x$	10 <i>b</i>	Yes	Moderate	Phase detection $\phi_{\Delta} \leq \pi$	Digital data
FM§¶	2 <i>M</i> (<i>D</i>)	$3D^2S_x$	10 <i>b</i>	Yes	Moderate	Frequency detection	Broadcast radio, microwave relay, satellite systems

† Unless direct-coupled.

‡ With electronic DC restoration.

§ $b \ge 2$.

¶ Deemphasis not included.

Comparison of the noise performance of various CW modulation systems. Curve I: Full AM, $\mu = 1$. Curve II: DSB-SC, SSB. Curve III: FM, $\beta = 2$. Curve IV: FM, $\beta = 5$. (Curves III and IV include 13-dB pre-emphasis, deemphasis improvement..)

Encryption

- Encryption is a translation of data into a secret code. Encryption is the most effective way to achieve data security. To read an encrypted file, you must have access to a secret key that enables you to decrypt it. Unencrypted data is called plain text; encrypted data is referred to as cipher (text).
- Encryption can be used to ensure secrecy, but other techniques are still needed to make communications secure: authentication, authorization, and message integrity.
 - Message integrity both parties will always wish to be confident that a message has not been altered during transmission. The encryption makes it difficult for a third party to read a message, but that third party may still be able to alter it in a useful way.
 - Authentication is a way to ensure users are who they say they are that the user who attempts to perform functions in a system is in fact the user who is authorized to do so.
 - Authorization protects computer resources (data, files, programs, devices) by allowing those resources to be used by resource consumers having been granted authority to use them.
 - Digital rights management etc.

Encryption – cipher taxonomy

Transposition Method

- Da Vinci's code
- Ex.
 - I am a student I m s u e t
 - a a t d n

Substitution Method

Shift Cipher (Caesar's Cipher)
I CAME I SAW I CONQUERED
H BZLD H TZV H BNMPTDSDC

Julius Caesar to communicate with his army

plain ABCDEFGHIJKLMNOPQRSTUVWXYZ cipher DKVQFIBJWPESCXHTMYAUOLRGZN

Language, wind talker

Rotor Machine

- The primary component is a set of *rotors*, also termed *wheels* or *drums*, which are rotating disks with an array of <u>electrical contacts</u> on either side. The wiring between the contacts implements a fixed <u>substitution</u> of letters, scrambling them in some complex fashion. On its own, this would offer little security; however, after encrypting each letter, the rotors advance positions, changing the substitution. By this means, a rotor machine produces a complex <u>polyalphabetic substitution</u> cipher.
- German Enigma machine used

during World War II for submarine.

Movie U571, Italian Job

Key

Public Key System - RSA

- Named after its inventors Ron Rivest, Adi Shamir and Len Adleman
- Base on Number Theory

 $y=e^x \pmod{N} \Rightarrow x=??$

- If the size of N is 100, it takes 100 billion years to decipher with 1GHz computer.
- Applications
 - Digital Signatures
 - Digital Cash: Movie, swordfish
 - Timestamping Services: Movie, entrapment
 - Election
- Movie, mercury rising

Encryption – cipher taxonomy

- Historical pen and paper ciphers used in the past are sometimes known as classical ciphers. They include substitution ciphers and transposition ciphers.
- During the early 20th century, more sophisticated machines for encryption were used, rotor machines, which were more complex than previous schemes.
- Encryption methods can be divided into symmetric key algorithms and asymmetric key algorithms. In a symmetric key algorithm (DES, AES), the sender and receiver must have a shared key set up in advance and kept secret from all other parties; the sender uses this key for encryption, and the receiver uses the same key for decryption.
- In an asymmetric key algorithm (RSA), there are two separate keys: a public key is published and enables any sender to perform encryption, while a private key is kept secret by the receiver and enables him to perform decryption.

Quantum Cryptography

• Use physics law, if the signal is measured (eavesdropped), the receiver can always detected.

Thanking You

