## Chapter 10

## Multiplexing and Demultiplexing

> Transmitting two or more signals simultaneously can be accomplished by setting up one transmitterreceiver pair for each channel, but this is an expensive approach.
> A single cable or radio link can handle multiple signals simultaneously using a technique known as multiplexing.
$>$ Multiplexing permits hundreds or even thousands of signals to be combined and transmitted over a single medium.
$>$ Cost savings can be gained by using a single channel to send multiple information signals.

## Fig. 10-1: Concept of multiplexing



## The two most common types of multiplexing

Frequency-division multiplexing (FDM)
$>$ Generally used for analog information.
> Individual signals to be transmitted are assigned a different frequency within a common bandwidth.

Time-division multiplexing (TDM)
$>$ Generally used for digital information.
> Multiple signals are transmitted in different time slots on a single channel.

## Transmitter-Multiplexers

$>$ In an FDM system, each signal to be transmitted feeds a modulator circuit.
> The carrier for each modulator $\left(f_{c}\right)$ is on a different frequency.
> The carriers are equally spaced from one another.
$>$ These carriers are referred to as subcarriers.
>Each input signal is given a portion of the bandwidth.

## FDM: (a) block diagram



## FDM: (b) frequency spectrum


(b)

## Transmitter-Multiplexers

> The modulator outputs containing the sideband information are added algebraically in a linear mixer.
>The resulting output signal is a composite of all the modulated subcarriers.
$>$ This signal can be used to modulate a radio transmitter, or can itself be transmitted over a single channel.
$>$ The composite signal can also become one input to another multiplexed system.

## American Telephone \& Telegraph Company's FDM hierarchy



## Example 10-1

A cable TV service uses a single coxial cable with a bandwidth of 860 MHz to transmit multiple TV signals to subscribers. Each TV signal is 6 MHz wide. How many channels can be carried?

Solution:
Total channels $=860 / 6=143.33$ or 143

## Time Division Multiplexing (TDM)

$>$ In FDM, multiple signals are transmitted over a single channel, each signal being allocated a portion of the spectrum within that bandwidth.
$>$ In time-division multiplexing (TDM), each signal occupies the entire bandwidth of the channel.
$>$ Each signal is transmitted for only a brief period of time.

## Figure 10-14: Simple rotary-switch multiplexer



## FIGURE 11-1 Single-channel (DS-0-level) PCM transmission system



(a)

## 1 TDM frame $125 \mu \mathrm{~s}$


(b)

## Figure 10-12: The basic TDM concept



FIGURE 11-3A Bell system T1 digital carrier system: (a) block diagram; (b) sampling sequence

(a)

(b)

Figure 10-15: Four-channel PAM time-division multiplexer
$>$ Four different analog signals can be sampled by a PAM multiplexer.

- Signals A and C are
 continuously varying analog signals.
- Signal B is a positivegoing linear ramp.
- Signal D is a constant DC voltage.


Figure 10-16: A time-division multiplexer used to produce pulse-amplitude modulation


Figure 10-17: Waveforms for a PAM multiplexer


## Figure 10-18: A PAM demultiplexer



## Example 10-2

A special PCM system uses 16 channels of data, one whose purpose is identification (ID) and synchronization. The sampling rate is 3.5 kHz . The word length is 6 bits. Find (a) the number of available data channels, (b) the number of bits per frame, and (c) the serial data rate.
a. 16 (total no. of channels) -1 (channel used for ID) $=15$ (for data)
b. Bits/frame $=6 \times 16=96$
c. Serial data rate $=$ channels/frame $\times$ frames $/ \mathrm{s} \times$ bits/channel $=16 \times 3.5 \mathrm{kHz}$ X $6=336 \mathrm{kHz}$

## Digital Carrier System

Figure 10-25 The T-1 frame format, serial data


Figure 10-26 The T-carrier system


