
Measures of Information 

• Hartley defined the first information measure: 

– H = n log s 

– n is the length of the message and s is the number of 

possible values for each symbol in the message 

– Assumes all symbols equally likely to occur 

• Shannon proposed variant (Shannon’s Entropy) 

 

 

• weighs the information based on the probability that an 

outcome will occur 

• second term shows the amount of information an event 

provides is inversely proportional to its prob of occurring 
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Three Interpretations of Entropy 

• The amount of information an event provides 

– An infrequently occurring event provides more 

information than a frequently occurring event 

• The uncertainty in the outcome of an event 

– Systems with one very common event have less entropy 

than systems with many equally probable events 

• The dispersion in the probability distribution 

– An image of a single amplitude has a less disperse 

histogram than an image of many greyscales 

• the lower dispersion implies lower entropy 



Definitions of Mutual Information 

• Three commonly used definitions: 

– 1) I(A,B) = H(B) - H(B|A) = H(A) - H(A|B) 

• Mutual information is the amount that the uncertainty in B (or 

A) is reduced when A (or B) is known. 

– 2) I(A,B) = H(A) + H(B) - H(A,B) 

• Maximizing the mutual info is equivalent to minimizing the 

joint entropy (last term) 

• Advantage in using mutual info over joint entropy is it includes 

the individual input’s entropy 

• Works better than simply joint entropy in regions of image 

background (low contrast) where there will be low joint 

entropy but this is offset by low individual entropies as well so 

the overall mutual information will be low 



Definitions of Mutual Information II 

 

 

 

• This definition is related to the Kullback-Leibler distance 

between two distributions 

• Measures the dependence of the two distributions 

• In image registration I(A,B)  will be maximized when the 

images are aligned 

• In feature selection choose the features that minimize I(A,B) to 

ensure they are not related. 
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Additional Definitions of Mutual 

Information 

• Two definitions exist for normalizing Mutual 

information:  

– Normalized Mutual Information: 

 

 

 

– Entropy Correlation Coefficient: 
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Derivation of M. I. Definitions 
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Properties of Mutual Information 

• MI is symmetric: I(A,B) = I(B,A) 

• I(A,A) = H(A) 

• I(A,B) <= H(A), I(A,B) <= H(B) 

– info each image contains about the other cannot be 

greater than the info they themselves contain 

• I(A,B) >= 0 

– Cannot increase uncertainty in A by knowing B 

• If A, B are independent then I(A,B) = 0 

• If A, B are Gaussian then: 
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Mutual Information based Feature 

Selection 
• Tested using 2-class Occupant sensing problem 

– Classes are RFIS and everything else (children, adults, 

etc). 

– Use edge map of imagery and compute features 

• Legendre Moments to order 36 

• Generates 703 features, we select best 51 features. 

• Tested 3 filter-based methods: 

– Mann-Whitney statistic 

– Kullback-Leibler statistic 

– Mutual Information criterion 

• Tested both single M.I., and Joint M.I. (JMI) 



Mutual Information based Feature 

Selection Method 
• M.I. tests a feature’s ability to separate two 

classes. 

– Based on definition 3) for M.I. 

 

 

 

– Here A is the feature vector and B is the classification 

• Note that A is continuous but B is discrete 

– By maximizing the M.I. We maximize the separability 

of the feature 

• Note this method only tests each feature individually 
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