> Noise, Information Theory,
and Entropy

CS414 — Spring 2007
By Roger Cheng

(Huffman coding slides courtesy
of Brian Bailey)

AN




N

Why study noise?

# It's present in all
systems of interest,
and we have to deal

with it

# By knowing its
characteristics, we
can fight it better

# Create models to
evaluate analytically
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# Transmitted signal s(t)
is corrupted by noise
source n(t), and the
resulting received signal
IS r(t)

# Noise could result form
many sources, including
electronic components
and transmission
interference

The additive noise channel

s(t) —

n(t)

— r(t)
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Random processes

# A random variable is the result of a single
measurement

# A random process is a indexed collection of

random variables, or equivalently a non-
deterministic signal that can be described by
a probability distribution

# Noise can be modeled as a random process




N

WGN (White Gaussian Noise)

#® Properties

s At each time instant t = t,, the value of
n(t) is normally distributed with mean 0O,

variance o2 (ie E[n(t,)] = 0, E[n(t,)?] = 0?)
= At any two different time instants, the
values of n(t) are uncorrelated

(ie E[n(ty)n(t,)] = 0)
= The power spectral density of n(t) has
equal power in all frequency bands
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WGN continued

# \When an additive noise channel has a white
Gaussian noise source, we call it an AWGN
channel

# Most frequently used model in

communications

# Reasons why we use this model
= It's easy to understand and compute
= It applies to a broad class of physical channels
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Signal energy and power

® Energy is defined as .- [|x(r)| * dt

T/2

® Power is definedas  p = lim% j | x(2)|dt
T —x

-T/2
# Most signals are either finite energy and zero
power, or infinite energy and finite power

# Noise power is hard to compute in time domain
= Power of WGN is its variance o2
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Signal to Noise Ratio (SNR)

# Defined as the ratio of signal power to the
noise power corrupting the signal

SNR — Zoemal _ (‘4‘5@“1)_

Fﬂﬂiﬂe Anﬂise
# Usually more practical to measure SNR on a
dB scale
SNR(dB) = 10log,, (E”‘f‘“‘) = 20logy (i*"‘ ')

# Obviously, want as high an SNR as possible
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Analog vs. Digital

# Analog system

= Any amount of noise will create distortion at the
output

# Digital system

= A relatively small amount of noise will cause no
harm at all

= Too much noise will make decoding of received
signal impossible

@ Both - Goal is to limit effects of noise to a
manageable/satisfactory amount
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Information theory and
entropy

# Information theory tries
to solve the problem of
communicating as much
data as possible over a
noisy channel

# Measure of data is
entropy

# Claude Shannon first
demonstrated that
reliable communication
over a noisy channel is
possible (jJump-started
digital age)
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Entropy definitions

#Shannon entropy
H(p) = —ép(i) log p(1),
#Binary entropy formula

Hy(p)=H(p,1 —p)=—plogp — (1 —p)log(1 —p).

# Differential entropy
WAl == [ f(a)log f(x)dz,

—_~
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Properties of entropy

# Can be defined as the expectation of log p(x)
(ie H(X) = E[-log p(x)])
# Is not a function of a variable’s values, is a

function of the variable’s probabilities

# Usually measured in “bits” (using logs of base
2) or “nats” (using logs of base e)

# Maximized when all values are equally likely
(ie uniform distribution)

# Equal to 0 when only one value is possible
= Cannot be negative




Joint and conditional entropy

N
\J

# Joint entropy is the entropy of the
pairing (X,Y)

H(X,Y) =Exy[-logp(z,y)] = ZP r,y)logp(z, y)

# Conditional entropy is the entropy of X
if the value of Y was known
H(X|y) = Exyy[-log p(z|y)] = — ) p(z|y)logp(z|y)

reX

# Relationship between the two
H(X|Y)=H(X,Y)— H(Y).
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Mutual information

# Mutual information is how much
information about X can be obtained by
observing Y

p(z

l})—Zpy)Zprly)lﬂﬁ Im = > p(z,y)log )y)

yeY yj

I(X:;Y) = H(X) — |’r).




Mathematical model of a
channel

# Assume that our input to the channel is
X, and the output is Y

#Then the characteristics of the channel
can be defined by its conditional
probability distribution p(y|x)
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Channel capacity and rate

#Channel capacity is defined as the
maximum possible value of the mutual
information

C = m;u-:f(}f;}’).
= We choose the best f(x) to maximize C

#For any rate R < C, we can transmit
information with arbitrarily small
probability of error




Binary symmetric channel

# Correct bit transmitted with probability 1-p

#\Wrong bit transmitted with probability p
s Sometimes called “cross-over probability”

#Capacity C = 1 - H(p,1-p)
0 1—p 0

P

P
1 1

1 —p




Binary erasure channel

# Correct bit transmitted with probability 1-p
#"Erasure” transmitted with probability p
®CapacityC=1-p

T e
P - ()
p
€
p
1 -1
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Coding theory

# Information theory only gives us an upper
bound on communication rate

# Need to use coding theory to find a practical

method to achieve a high rate
# 2 types

= Source coding - Compress source data to a
smaller size

= Channel coding - Adds redundancy bits to make
transmission across noisy channel more robust




Source-channel separation
theorem
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#Shannon showed that when dealing
with one transmitter and one receiver,
we can break up source coding and
channel coding into separate steps
without loss of optimality

#Does not apply when there are multiple
transmitters and/or receivers

= Need to use network information theory
principles in those cases




Huffman Encoding
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# Use probability distribution to determine
how many bits to use for each symbol

= higher-frequency assigned shorter codes

= entropy-based, block-variable coding
scheme




Huffman Encoding
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# Produces a code which uses a minimum
number of bits to represent each symbol

= cannot represent same sequence using fewer rea/
bits per symbol when using code words

= optimal when using code words, but this may
differ slightly from the theoretical lower limit

# Build Huffman tree to assign codes




Informal Problem Description
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# Given a set of symbols from an alphabet and
their probability distribution
= assumes distribution is known and stable

# Find a prefix free binary code with minimum
weighted path length

s prefix free means no codeword is a prefix of any
other codeword
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Huffman Algorithm

# Construct a binary tree of codes
= leaf nodes represent symbols to encode
= interior nodes represent cumulative probability

= edges assigned 0 or 1 output code

# Construct the tree bottom-up

= connect the two nodes with the lowest probability
until no more nodes to connect




Huffman Example
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# Construct the
Huffman coding tree
(in class)

Sy(n;l)aol AS)
A 0.25
B 0.30
C 0.12
D 0.15
E 0.18




Characteristics of Solution
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# Lowest probability symbol is

always furthest from root Sy(n;l)aol Code
# Assignment of 0/1 to children A 11

edges arbitrary

= other solutions possible; lengths B 00
remain the same
= If two nodes have equal C 010
probability, can select any two
D 011
# Notes
E 10

n prefix free code

= O(nign) complexity
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Encode “"BEAD”
—001011011

—Decode “"0101100"

Example Encoding/Decoding

Symbol

(S) Code
A 11
B 00
C 010
D 011
E 10




-.30 * log, .30 +
-.12 * log, .12 +
-.15 * log, .15 +
-.18 * log, .18

H = 2.24 bits

Entropy (Theoretical Limit)

Symbol | AS) | Code
A 0.25 | 11
B 0.30 | 00
C 0.12 | 010
D 0.15 | 011
E 0.18 | 10




A
Y

N
L= Z p(si)codelength (s:)
i=1

= .25(2) +
30(2) +
12(3) +
.15(3) +
.18(2)

L = 2.27 bits

Average Codeword Length

Symbol | AS) | Code
A 0.25 | 11
B 0.30 | 00
C 0.12 | 010
D 0.15 | 011
E 0.18 | 10




Code Length Relative to
Entropy

N N
L= Z p(si)codelength (s:) H = Z— p(si)log.p(si)
i=l

i=1

#Huffman reaches entropy limit when all
probabilities are negative powers of 2

mie., 1/2; 1/4; 1/8; 1/16; etc.

#H <= Code Length <=H + 1
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Example

H = -.01*log,.01 +
-.99*l0g,.99

= .08

L =.01(1) +
.99(1)
=1

Symbol | AS) | Code
A 0.01 1
B 0.99 0




Limitations
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# Diverges from lower limit when probability of
a particular symbol becomes high

= always uses an integral number of bits

#® Must send code book with the data
= lowers overall efficiency

# Must determine frequency distribution
s Mmust remain stable over the data set




