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Why study noise? 

It’s present in all 
systems of interest, 
and we have to deal 
with it 

By knowing its 
characteristics, we 
can fight it better 

Create models to 
evaluate analytically 

 



Communication system 
abstraction 

Information 
source 

Encoder Modulator 

Channel 

Output signal Decoder Demodulator 

Sender side 

Receiver side 



The additive noise channel 

Transmitted signal s(t) 
is corrupted by noise 
source n(t), and the 
resulting received signal 
is r(t) 

Noise could result form 
many sources, including 
electronic components 
and transmission 
interference 

n(t) 

+ s(t) r(t) 



Random processes 

A random variable is the result of a single 
measurement 

A random process is a indexed collection of 
random variables, or equivalently a non-
deterministic signal that can be described by 
a probability distribution 

Noise can be modeled as a random process 



WGN (White Gaussian Noise) 

Properties 
 At each time instant t = t0, the value of 

n(t) is normally distributed with mean 0, 
variance σ2 (ie E[n(t0)] = 0, E[n(t0)

2] = σ2) 

 At any two different time instants, the 
values of n(t) are uncorrelated               
(ie E[n(t0)n(tk)] = 0) 

 The power spectral density of n(t) has 
equal power in all frequency bands 



WGN continued 

When an additive noise channel has a white 
Gaussian noise source, we call it an AWGN 
channel 

Most frequently used model in 
communications 

Reasons why we use this model 
 It’s easy to understand and compute 

 It applies to a broad class of physical channels 

 



Signal energy and power 

Energy is defined as 

 

Power is defined as 

 

Most signals are either finite energy and zero 
power, or infinite energy and finite power 

Noise power is hard to compute in time domain 
 Power of WGN is its variance σ2 
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Signal to Noise Ratio (SNR) 

Defined as the ratio of signal power to the 
noise power corrupting the signal 

 

 

Usually more practical to measure SNR on a 
dB scale 

 

 

Obviously, want as high an SNR as possible 



Analog vs. Digital 

Analog system 
 Any amount of noise will create distortion at the 

output 

Digital system 
 A relatively small amount of noise will cause no 

harm at all 

 Too much noise will make decoding of received 
signal impossible 

Both - Goal is to limit effects of noise to a 
manageable/satisfactory amount 



Information theory and 
entropy 

Information theory tries 
to solve the problem of 
communicating as much 
data as possible over a 
noisy channel 

Measure of data is 
entropy 

Claude Shannon first 
demonstrated that 
reliable communication 
over a noisy channel is 
possible (jump-started 
digital age) 



Entropy definitions 

Shannon entropy 

 

Binary entropy formula 

 

Differential entropy 



Properties of entropy 

Can be defined as the expectation of log p(x) 
(ie H(X) = E[-log p(x)]) 

Is not a function of a variable’s values, is a 
function of the variable’s probabilities 

Usually measured in “bits” (using logs of base 
2) or “nats” (using logs of base e) 

Maximized when all values are equally likely 
(ie uniform distribution) 

Equal to 0 when only one value is possible 
 Cannot be negative 



Joint and conditional entropy 

Joint entropy is the entropy of the 
pairing (X,Y) 

 

Conditional entropy is the entropy of X 
if the value of Y was known 

 

Relationship between the two 



Mutual information 

Mutual information is how much 
information about X can be obtained by 
observing Y 



Mathematical model of a 
channel 

Assume that our input to the channel is 
X, and the output is Y 

Then the characteristics of the channel 
can be defined by its conditional 
probability distribution p(y|x) 



Channel capacity and rate 

Channel capacity is defined as the 
maximum possible value of the mutual 
information 

 
 We choose the best f(x) to maximize C 

For any rate R < C, we can transmit 
information with arbitrarily small 
probability of error 



Binary symmetric channel 

Correct bit transmitted with probability 1-p 

Wrong bit transmitted with probability p 

 Sometimes called “cross-over probability” 

Capacity C = 1 - H(p,1-p) 



Binary erasure channel 

Correct bit transmitted with probability 1-p 

“Erasure” transmitted with probability p 

Capacity C = 1 - p 



Coding theory 

Information theory only gives us an upper 
bound on communication rate 

Need to use coding theory to find a practical 
method to achieve a high rate 

2 types 

 Source coding - Compress source data to a 
smaller size 

 Channel coding - Adds redundancy bits to make 
transmission across noisy channel more robust 



Source-channel separation 
theorem 

Shannon showed that when dealing 
with one transmitter and one receiver, 
we can break up source coding and 
channel coding into separate steps 
without loss of optimality 

Does not apply when there are multiple 
transmitters and/or receivers 
 Need to use network information theory 

principles in those cases 



Huffman Encoding 

Use probability distribution to determine 
how many bits to use for each symbol 

 higher-frequency assigned shorter codes 

 entropy-based, block-variable coding 
scheme 



Huffman Encoding 

Produces a code which uses a minimum 
number of bits to represent each symbol 

 cannot represent same sequence using fewer real 
bits per symbol when using code words 

 optimal when using code words, but this may 
differ slightly from the theoretical lower limit 

 

Build Huffman tree to assign codes 



Informal Problem Description 

Given a set of symbols from an alphabet and 
their probability distribution 

 assumes distribution is known and stable 

 

Find a prefix free binary code with minimum 
weighted path length 

 prefix free means no codeword is a prefix of any 
other codeword 



Huffman Algorithm 

Construct a binary tree of codes 

 leaf nodes represent symbols to encode 

 interior nodes represent cumulative probability  

 edges assigned 0 or 1 output code 

 

Construct the tree bottom-up 

 connect the two nodes with the lowest probability 
until no more nodes to connect 



Huffman Example 

Construct the 
Huffman coding tree 
(in class) 

 

Symbol 
(S) 

P(S) 

A 0.25 

B 0.30 

C 0.12 

D 0.15 

E 0.18 



Characteristics of Solution  

Lowest probability symbol is 
always furthest from root  
 
Assignment of 0/1 to children 
edges arbitrary 
 other solutions possible; lengths 

remain the same 
 If two nodes have equal 

probability, can select any two 

 
Notes 
 prefix free code 
 O(nlgn) complexity 

Symbol 
(S) 

Code 

A 11 

B 00 

C 010 

D 011 

E 10 



Example Encoding/Decoding 

Encode “BEAD” 

001011011 

 

 

Decode “0101100” 

Symbol 
(S) 

Code 

A 11 

B 00 

C 010 

D 011 

E 10 



Entropy (Theoretical Limit) 

 

 
 

=  -.25 * log2 .25 +  
-.30 * log2 .30 +  
-.12 * log2 .12 +  
-.15 * log2 .15 +  
-.18 * log2 .18 

 

H = 2.24 bits 
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Average Codeword Length 

 

 

 

= .25(2) + 
.30(2) + 
.12(3) + 
.15(3) + 
.18(2) 

 

L = 2.27 bits 
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Code Length Relative to 
Entropy 

 

 

Huffman reaches entropy limit when all 
probabilities are negative powers of 2 

 i.e., 1/2; 1/4; 1/8; 1/16; etc. 

 

H <= Code Length <= H + 1 
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Example 

H = -.01*log2.01 +  
-.99*log2.99 

    = .08 

 

L = .01(1) + 
.99(1) 

    = 1 

 

 

Symbol P(S) Code 

A 0.01 1 

B 0.99 0 



Limitations 

Diverges from lower limit when probability of 
a particular symbol becomes high 
 always uses an integral number of bits 

 

Must send code book with the data 
 lowers overall efficiency 

 

Must determine frequency distribution 
 must remain stable over the data set 


