Multilevel Binary Pseudoternary

- Binary one represented by absence of line signal
- Binary zero represented by alternating positive and negative pulses
- No advantage or disadvantage over bipolar-AMI
- Each used in some applications

Multilevel Binary Issues

Advantages:

- No loss of synchronization if a long string of 1's occurs, each introduce a transition, and the receiver can resynchronize on that transition
- No net dc component, as the 1 signal alternate in voltage from negative to positive
- Less bandwidth than NRZ
- Pulse alternating provides a simple mean for error detection

Disadvantages

- receiver distinguishes between three levels: +A, -A, 0
- \Box a 3 level system could represent log₂3 = 1.58 bits
- requires approx. 3dB more signal power for same probability of bit error

Theoretical Bit Error Rate (BER) For Various Encoding Schemes

Manchester Encoding

has transition in middle of each bit period
low to high represents binary one
transition serves as clock and data
high to low represents binary zero
used by IEEE 802.3 (Ethernet) LAN standard

Manchester Encoding

Differential Manchester Encoding

- midbit transition is clocking only
- transition at start of bit period representing binary 0
- no transition at start of bit period representing binary 1
 used by IEEE 802.5 token ring LAN

Differential Manchester Encoding

Advantages and disadvantages of Manchester Encoding

Disadvantages

> at least one transition per bit time and possibly two

maximum modulation rate is twice NRZ

- $D = \frac{R}{L}$
- D: Modulation rate, [baud]
- R: Data Rate, [bps]
- L: number of bits per signal elements

requires more bandwidth

Advantages

- > synchronization on mid bit transition (self clocking codes)
- has no dc component
- has error detection capability (the absence of an expected transition can be used to detect errors)

Modulation Rate versus Data Rate

Data rate (expressed in bps)

Data rate or bit rate R=1/T_b=1/1µs=1Mbps

Modulation Rate (expressed in baud) is the rate at which signal elements are generated

Maximum modulation rate for Manchester is D=1/(0.5T_b)=2/1µs=2Mbaud

Scrambling

Use scrambling to replace sequences that would produce constant voltage

These filling sequences must

produce enough transitions to maintain synchronization

be recognized by receiver & replaced with original

be same length as original

Design goals

have no dc component

have no long sequences of zero level line signal

have no reduction in data rate

give error detection capability

B8ZS and HDB3

Bipolar with 8-Zero Substitution (B8ZS)

- To overcome the drawback of the AMI code that a long string of zeros may result in loss of synchronization, the encoding is amended with the following rules:
 - If 8 zeros occurs and the last voltage pulse was positive, then the 8 zeros are encoded as 000+-0-+
 - If zeros occurs and the last voltage pulse was negative, then the 8 zeros are encoded as 000-+0+-

High Density Bipolar-3 zeros (HDB3)

- □ The scheme replaces strings with 4 zeros by sequences containing one or two pulses
- In each case, the fourth zero is replaced with a code violation (V)
- successive violations are of alternate polarity

Table 5.4 HDB3 Substitution Rules

	Number of Bipolar Pulses (ones) since Last Substitution	
Polarity of Preceding Pulse	Odd	Even
-	000-	+00+
+	000+	-00-

Digital Data, Analog Signal

❑ Main use is public telephone system
> has freq range of 300Hz to 3400Hz
> use modem (modulator-demodulator)
❑ The digital data modulates the amplitude *A*, frequency *f_c*, or phase *θ* of a carrier signal *A* cos(2*πf_ct* + *θ*)

Modulation techniques

Amplitude Shift Keying (ASK)
 Frequency Shift Keying (FSK)
 Phase Shift Keying (PSK)

Modulation Techniques

Amplitude Shift Keying (ASK)

In ASK, the two binary values are represented by to different amplitudes of the carrier frequency

The resulting modulated signal for one bit time is

$$s(t) = \begin{cases} A\cos(2\pi f_c t), & binary \\ 0, & binary \end{cases}$$

Susceptible to noise

Inefficient modulation technique

used for

- > up to 1200bps on voice grade lines
- very high speeds over optical fiber

Binary Frequency Shift Keying (BFSK)

The most common form of FSK is Binary FSK (BFSK)
 Two binary values represented by two different frequencies (*f*₁ and *f*₂)

$$s(t) = \begin{cases} A\cos(2\pi f_1 t), \ binary \ 1\\ A\cos(2\pi f_2 t), \ binary \ 0 \end{cases}$$

- less susceptible to noise than ASKused for
 - > up to 1200bps on voice grade lines
 - high frequency radio (3 to 30MHz)
 - even higher frequency on LANs using coaxial cable